

University of the Pacific Scholarly Commons

Euler Archive - All Works

Euler Archive

1783

De seriebus, in quibus producta ex minis terminis contiguis datam constituunt progressionem

Leonhard Euler

Follow this and additional works at: https://scholarlycommons.pacific.edu/euler-works

Part of the <u>Mathematics Commons</u> Record Created: 2018-09-25

Recommended Citation

Euler, Leonhard, "De seriebus, in quibus producta ex minis terminis contiguis datam constituunt progressionem" (1783). *Euler Archive - All Works*. 550. https://scholarlycommons.pacific.edu/euler-works/550

This Article is brought to you for free and open access by the Euler Archive at Scholarly Commons. It has been accepted for inclusion in Euler Archive - All Works by an authorized administrator of Scholarly Commons. For more information, please contact mgibney@pacific.edu.

States and

DE SERIEBVS

IN QVIBVS PRODVCTA EX BINIS TERMINIS CONTIGVIS

DATAM CONSTITUTION PROGRESSIONEM.

ropolita progressione numerorum quacunque:

A, B, C, D, E, F, etc.

quaeftio, quam hic tractare flatui, in hoc confiftit, vt inveniatur eiusmodi feries :

. 4

a, b, c, d, e, f, etc.

in qua fit:

ab=A; bc=B; cd=C; de=D; ef=E; fg=F; etc. vbi, etfi numeri A, B, C, D, etc. fint rationales, fatisque fimplici lege procedant, plerumque fieri folet, vt numeri a, b, c, d, etc. euadant adeo maxime tranfcendentes. Euidens autem eft totum negotium ad vnicum terminum huius feriei reuncari; quippe quo cognito reliqui omnes facillime definientur: inuento enim primo a reliqui ita fe habebunt:

 $b := \frac{\Lambda}{a}; \ e := \frac{B}{b}; \ d := \frac{C}{c}; \ e := \frac{D}{a}; \ \text{etc.}$ A 2

Dupli

opt

greffio in infinitum producta in geumetricam abire foler, ita vt interpolandi fint medii: proportionales inter binos greffione fimplici confundatur, cuius interpolatio nulli amcontiguos. plius difficultati fit obnoxia. comparata, vt in infinitum continuata cum eiusmodi proquaesiti a manuducet. At itta progreffio femper ita eft Plerumque autem illa pro-

icta cu-

llae

ęs, ë F

Ś မံ Si ergo feriem

a, A., aB, AC, aBD, ACE, etc.

veritatem accedemus, quam taudem in infinito plane afrabimus; fed quo longius progrediamur, eo propius ad totami vt geometricami fpectemus, indeque terminos medios definiamus, ab initio multum fortaffe a veritate aberunuo. magis. appropinquabunt : fequemur. Hinc fequentes determinationes ad verum con-

	Sieque				
a.a - A. AC CE EC CI IL. etc.	Sieque revera in infinitum progrediendo crit	etc.	a a AACC BE	a.a AVCC	$a a = \frac{A}{B}$
HINKK etc.	progrediendo erit	etc:	a.a - AACCEEC	a a AACCE	a a AAC

ដ្ដី

.

.

ភូ

5. 4: Expressio haec infinita verum valorem ipfe-us a exhibet, quoties progressio numerorum A, B, C, D; tionem acqualitatis tencant, illiusque: expressionis factores tandem in vnitatem abeant: Welutt. fi pro. A, B, C, D, erc. ita elt comparata, ve termini infinitefimi inter fe ra-

ē

Ŧ

etc. feries numerorum naturalium accipiatur, vt fit A 3 8 0:

ni Tri,

a, A, aB, AC, aBD, ACE, etc. termini

fient acquales. Vnde cum ferici continuo propius ad vnitatem accedunt, eique

5. 8. Si fuerit s = q, numeri A, B, C, D, etc. tandem

vbi iterum post integrationem poni oportet z H

$$a a = \frac{p}{r} \cdot \frac{fz^{p+q-1} dz; V(1-z^{sq}) \cdot fz^{r-1} dz; V(1-z^{sf})}{r} \cdot \frac{fz^{p-1} dz; V(1-$$

cuius valor vt fupra colligitur;

 $a a = \frac{b}{r} \cdot \frac{b(r+1)(r+1)(r+1)}{r} (\frac{b+1}{r+1}) (\frac{$

qualitatis conuergunt, erit ć ad rationem ac-

ŝ

numerorum a, b, c, d, e, etc. fit inuefliganda:

grefilo mixta ex arithmetica & harmonica, vt talis

feries pro

Si pro A, B, C, D, etc. fumatur

۲. ۶

posito post vtramque integrationem z ... 1.

$$b = \frac{b}{2}; \ b \ c = \frac{b+d}{2}; \ c \ d = \frac{b+d}{2}; \ d$$

$$ab = \frac{p}{r}; \ b \ c = \frac{p+q}{r+s}; \ c \ d = \frac{p+q}{r+s}; \ d \ e = \frac{p}{r+s};$$

$$ab = \frac{p}{r}; \ b \ c = \frac{p+q}{r+s}; \ c \ d = \frac{p+sq}{r+ss}; \ d \ e = \frac{p+sq}{r+ss};$$

$$a \circ - \frac{1}{r}; o \circ - \frac{1}{r+3}; o a - \frac{1}{r+3}; a \circ - \frac{1}{r};$$

$$a = \frac{1}{r}; a = \frac{1}{r+1}; a = \frac{1}{r+1}; d = \frac{$$

$$ab = \frac{p}{r}; bc = \frac{p+1q}{r+1}; cd = \frac{p+1q}{r+1}; c$$

$$ab = \frac{p}{r}; \ bc = \frac{p+q}{r+s}; \ cd = \frac{p}{r}$$

$$ab=\frac{p}{r}; bc=\frac{p+q}{r+s}; c$$

$$ab = \frac{b}{r}; \ bc = \frac{b+i}{r+s}; \ cd = \frac{b}{r}$$

$$ab = \frac{p}{r}; bc = \frac{p+r}{r+r}$$

quia & hic numeri

crit

ab=1, b d=2, c d=3, d e=4, ef=5, fg=6, etc

₩\$?)o(}

 $a a = \frac{1}{2}, \frac{3}{4}, \frac{5}{4}, \frac{5}{4}, \frac{5}{4}, \frac{5}{6}, \frac{7}{4}, \frac{9}{4}, \frac{9}{12}, \frac{9}{12}, \frac{9}{12}, \frac{11}{12}, \frac{11}{12},$

ation**e** vt fit

dunt, crit

& quia termini infinitefimi ad rationem aequalitatis acce-

ab=p; bc=p+q; cd=p+2q; de=p+3q; etc.

beri poteft, vt fit

 $a = p. \frac{\int z^{p+q-1} dz : V(1-z^{2q})}{\int z^{p-q-1} dz : V(1-z^{2q})}$

 $(x^{1}, z^{2}, \ldots, z^{n})$

cuius expressionis valor ita per formulas integrales exhi-

 $a = p \cdot \frac{p(p+1q)}{(p+q)(p+q)} \cdot \frac{(p+1q)(p+1q)}{(p+1q)} \cdot \frac{(p+1q)(p+1q)}{(p+1q)} \cdot etc.$

, etc.

diametri ad peripheriam $= \mathbf{r} : \pi$, effe $= \frac{2}{\pi}$, ita vt fit $a = \mathcal{V}_{\pi}^{2}$, hincque $b \mathcal{V}_{\pi}^{\pi}$; $c = \frac{2\sqrt{2}}{\sqrt{\pi}}$; $d = \frac{2\sqrt{2}}{2\sqrt{2}}$; etc. Conftat autem hoc productum influitum, posita ratione

per approximationem eucluiffe corumque differentias no-

taffe iuuabit.

a 0, 7978845

diff. r.

diff. 2.

diff, 3:

(re

b 1, 2533140 4554295

1129745

582530

547215

_____ 1, 8799710 2842020 - 1, 5957690 3424550

2477210

110317 217720

64443 41312

lium lege quadam vniformitatis procedit, quos numeros

Н

3 110

neros

lenta-

Haec ergo feries numerorum transcendenta-

ş. Ş.

8 ... 2, 5532304 b ... 2 ...

1883929 2032667 2222717

> 148738 190050 254493 364810

р

f == 2, 3499637 e 2, 1276920

effen numeris A, B, C, D, etc. quaecunque capiatur progressio ġ. Eodem modo negotium procedit, fi pro

ita vt fit arithmetica. Quaerenda enim fit feries a, b, c, d, c, etc.

00

ab

받았

effio etc.

pro

₫.

, ex altus

	$= \frac{1}{\sqrt{2}} \delta_{1} \delta_{2} \delta_{$
--	---

Euleri Op. Anal. Tom. I.

ab = 1; b c = 2; c d = 3; d e = 4; ef = 5; etc.

CC

erit

I. Si effe debeat

5. 12. Contemplemur igitur aliquot exempla,

 $\int \frac{dz}{V(1-zz)} = \frac{\pi}{2} \text{ et } \int \frac{z \, dz}{V(1-zz)} = 1.$

÷€:?) € (}:3.

ac per formulas integrales:

vbi fi in numeratore pro z^e feribatur z^s, fiet

 $\boldsymbol{a} = \frac{\sqrt{s}}{\sqrt{q}} \cdot \frac{\int z^{n-s} dz : V(1-z^{s})}{\int z^{n-s} dz : V(1-z^{s})},$

 $a = \frac{\sqrt{q}}{\sqrt{s}} \cdot \frac{\int z^{\frac{q}{p}} - z}{\int z^{\frac{q}{p}-1} dz : V(z-z^{\frac{q}{q}})}$

. ب . ٠

inuentae, ita vt sit cuius ergo quadratum acquetur necesse est formulae supra

 $\frac{1}{2} \int z^{r-1} dz : V(1-z^{s}) = \frac{1}{r} \cdot \int z^{r+s-1} dz : V(1-z^{s})$

§. 11. Harum ergo formularum confeníus cafu, quo post integrationem statuitur z = 1, sequens nobis suppeditat Theorema:

fore

cuius veritatem quidem iam alibi ex aliis principiis de-monftratam dedi. Hinc ergo fequitur, fumendo r : s : x

 $p q f \frac{z^{p-1}dz}{V(1-z^{*q})} \cdot f \frac{z^{p+q-1}dz}{V(1-z^{*q})} = \frac{\pi}{2}$, ob

 $p q \int \frac{x^{p-1}dx}{V(1-x^{2})} \cdot \int \frac{x^{p+q-1}dx}{V(1-x^{2})} = t \int \frac{x^{r-1}dx}{V(1-x^{2})} \int \frac{x^{r+2m_{1}}dx}{V(1-x^{2})}$

 IV. Si generalius effe debear ab=p; bc=p+q; cd=p+aq; de=p+3?; ef=p+4q; etc. pur mductionem, ope Theorematis fupationis inflituendam, collineration oper Theorematic fupationis inflituendam, 	II. S effe debeat ab=x, ba=4, cd=7, de=30, eff=13, exc. end $a = \frac{1}{17}, \frac{7}{16}, \frac{15}{16}, \frac{15}{16}, \frac{15}{16}, etc.$ Eu $a = \frac{12^3 d = 1}{\sqrt{3}}, \frac{1}{16}, \frac{15}{16}, \frac{15}{16}, \frac{1}{16}$	for for $a = \frac{f \pi \pi d \pi \pi r r'(1 - \pi r)}{\int d \pi \pi r r'(1 - \pi r)}$. Cum vero fit ex theoremate modo exposito $\frac{\pi}{4} = \int \frac{d \pi}{\sqrt{1 - \pi r}} \cdot \int \frac{\pi \pi d \pi}{\sqrt{1 - \pi r}}$, colligiour $a = \frac{\pi}{\sqrt{\pi}} \int \frac{d \pi}{\sqrt{1 - \pi r}}$.	exit $a d = 1, \frac{11}{12}, \frac{11}$	•••••••••••••••••••••••••••••••••••••••
 ,	Concentration of the second		p.	
III. Si effe debeat ab=i; be=i; cd=i; de=i; ef=i; etc. b p=r; q=r; r=r; s=r; crit B = a	b $ \begin{array}{lllllllllllllllllllllllllllllllllll$	I. Si effe debeat $ab = \frac{1}{3}; bc = \frac{1}{3}; cd = \frac{1}{3}; dc = \frac{1}{3}; eff = \frac{1}{3}; etc.$ b = 1, q = 1, r = 2, s = 1, exit $a = \frac{1}{3}; \frac{1}{3}; \frac{5}{3}; \frac{1}{3}; etc.$ feu $a = \frac{1}{3}; \frac{1}{3}; \frac{5}{3}; \frac{1}{3}; \frac{1}{3}; etc.$	colligenus, $a = p \frac{\sqrt{2 q}}{\sqrt{\pi}} \cdot \int \frac{x^{p+q-i} dx}{\sqrt{(1-x^{iq})}} = \frac{\sqrt{\pi}}{\sqrt{2 q}} : \int \frac{x^{p-u} dx}{\sqrt{(1-x^{iq})^{2}}}$ §. 13. Hace exempla ex progressione arithmetics funt defumta, quibus adiungamus aliquot, in quibus nue merorum A, B, C, D, etc. progression est mixta ex ac- rithmetica et harmonica.	

*日本のために、「「「「」」

Meedine Me	ac primo inneffigemus cam feriem, in qua fit ab=p; $bc=p+q$; $cd=p+aq$; $de=p+3q$; ctc. vt fit per methodum pracedentem $aa=p.\frac{p(b+sq)}{(p+q)(p+q)}, \frac{(b+sq)(b+sq)}{(p+sq)(p+sq)}, \text{ etc.}$ et $aa=p.\frac{fz^{p+q-1}dz; V(1-z^{1q})}{fz^{p-1}dz; V(1-z^{1q})},$	Methodus altera, per fractiones continuas. §. 14. Seriem inueniendam ita cum indicibus re- praesentemus a, b, c, d, e, etc	$\frac{\sqrt{2}}{\sqrt{2}} = \frac{1}{\sqrt{2}} \cdot $	
---	---	--	--	--

13 (See

 $x = \frac{(p+nq)V_{2}q}{V}, \frac{V(1-x^{2}q)}{V(1-x^{2}q)} = \frac{V\pi}{V^{2}q}, \frac{V\pi}{V(1-x^{2}q)}, \frac{V\pi}{V^{2}q}, \frac{V\pi}{V(1-x^{2}q)}, \frac{V\pi}{V^{2}q}, \frac{V\pi}{V^{2}q},$

éfo Éfo

§. 15. Cum ergo pro hac ferie in genere fit xy = p + nq, quantitas x elusmodi functio indicis n effe debet, ve pofico in ea n + 1 loco n prodeat y, fiatque productum xy = p + nq; quod cum rationialitati adver-fetur, quaeri convouit valores quadratorum xx et yy, ex acquatione

xxyy ... pp + anp q + nngq;

Γ¢,

quandoquidem ratio illa functionum etiam ad quadrata patet. Hacc igitur inuchigatio commode latius extendetur ad refolutionem huius acquationis:

xxyy = aann + 2a fn + Y;

Vnde valor ipflus x x pluribus modis ad fractiones con-tinuas reduci poteft, qui fequentibus lemmatibus innituntur.

Lemma I.

ç

4

5. 16. Proposita hac acquatione:

in qua Y perinde ex n + x arque X ex n definitur: ponatur $(X + \lambda n + \mu) (Y + \lambda n + \nu) = \zeta \zeta nn + 2 \zeta \eta n + \delta_{\eta}$

Tt fit $X + \lambda n + \mu = \zeta_n + f + \xi_c$ et Y+1n++== 4n+&+ ++ +,

BC S

 $\begin{array}{l} X = (\zeta - \lambda) \, n + f - \mu + \frac{1}{2} \, \text{ot} \\ Y = (\zeta - \lambda) \, n + g - \nu + \frac{1}{2}, \end{array}$ н В

;

2 2.

H II

Ş

de dig en er er er

6. x8. Quocirca aequatio propofita $(X + \lambda n + \mu)(Y + \lambda n + \nu) = \zeta \zeta n n + 2 \zeta \eta n + 0$ ope huius fublicationis: $X = (\zeta - \lambda) n + \eta + \frac{\lambda - \zeta - \mu - \nu}{2} + \frac{\eta \eta - \frac{1}{2}(\lambda - \zeta + \mu - \nu)^{1 - 0}}{X}$ $Y = (\zeta - \lambda) n + \eta - \frac{\lambda + \zeta - \mu - \nu}{2} + \frac{\eta \eta - \frac{1}{2}(\lambda - \zeta + \mu - \nu)^{1 - 0}}{X}$ seducitur ad hanc acquationem ipfi propofitae fimilem: $(X' + \zeta n + \eta - \frac{\lambda + \zeta - \mu - \nu}{2} + \frac{\eta \eta - \frac{1}{2}(\lambda - \zeta + \mu - \nu)^{1 - 0}}{X} + \frac{\chi}{2} + \frac{\chi}{2} + \eta - \frac{\lambda + \zeta - \mu - \nu}{2} + \frac{\chi}{2} + $	5. ry. Hoc polito acquatio praefcripta abit in hanc: $\zeta \eta n z + \zeta (f + g) n + fg + \frac{i(\zeta_n+2)}{2y} +$	 -642) 14 (5:2- vhi jam X' et Y' fint novae functiones fimiles ipfarum # et n+1; atque neceffe eff fit g-ν=ζ-λ+f-μ, feu g=ζ-λ-μ+ν+f.
--	---	--

habebimus :: n qua Y periado ab n-1-1 atque X ab n pendet, pomain fit: wi ob fimilicudinem functionum effe debet vt aute factis his fubilitationibus: reducitur ad hanc fui fimilem; $\mathbf{Y} = (\zeta - \lambda)n + \eta - \frac{\lambda + \zeta - \mu - \nu}{2} + \frac{\frac{1}{2}(\lambda - \zeta + \mu - \nu)' - \eta \eta + \vartheta}{Y'}$ $\mathbf{X} = (\zeta - \lambda) n + \eta + \frac{\lambda - \zeta - \mu - \nu}{2} + \frac{1}{2} (\lambda - \zeta + \mu - \nu)^{*} - \eta \eta + \theta}{2}$ 5. 21. Porro fublitutiona horum valorum facta **β**=ζ-λ-μ+ν+*f*-Y - Xn++= <n+ 8+ 6n++++, X+x + = < = + / + = = * * (X+スカキド)(X+スカキャ)ニズズカカキ a ζ キカキ A) S. 20. Fropolita haz acquatione: (אי-ג'א-א-א-א-א-אי-ג'א) (אי-ג'א-א-א-אי-ג'א) \$. 19. Simili modo cadem acquatio proposica (X+λπ+X) (X+λπ+ν)=ζζπ+πζζηπ+φ Lemma IF.

30 (<u>1</u>-1)

+8)#+0,

<u>+ ~~)"-0</u>

5+H-V)-0

- 8.

11 + 12 · 13 ·

it in hanc:

P.

ーソーチ

ipfarum #

Ş. 19.

fimilem :

\$

$ \begin{array}{l} \begin{array}{l} \begin{array}{c} - e^{2i\beta} \\ & & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & $	·
---	---

n+fg-0 ff=≥nf-0,

+ 7(77-9);

- .)

i ergo vel m flatui o-

s effe deber

 $\frac{n+b+k}{b+k}X'$

Euleri Op. Anal. Tom. I. bit hanc fubilitutionemt 9. 25. Quomadmodum hie fumfinus $\alpha = x$, ita pofitio $\alpha = -x$, manentibus iisdem abbreulationibus, daatque fi breultatis gratia ponatur suppeditabit sequentem acquationem propositae similent; fequens substitutio: quae acquatio, posito breultatis gratia fant = e, reducitur ad hanc propositae fimilem: $\mathbf{X} \stackrel{i}{=} (\zeta - \lambda) + f \stackrel{i}{=} \mu \stackrel{i}{\to} \frac{\zeta_{(1)} - (\zeta - \lambda)}{\lambda - (\zeta - \lambda)}$ $\mathbf{Y} = (\zeta - \lambda) n + g - \nu + \frac{\zeta_{(2)} - (-\varepsilon) (n + \varepsilon)}{2} + \frac{1}{2} (\varepsilon + \varepsilon)}{2}$ $\mathbf{Y} = (\zeta - \lambda) n + g - v + \frac{\xi (\zeta + g - v) \eta}{v} + \frac{1}{v} + \frac{1$ Jニャナン(カャーの); ミニミーネールチャチャチャイン(カャーの) (x + (x + x) 2 + (x))(B + x 2 + (x)) $X = (\xi - \lambda) + f - \mu + \frac{\xi(f \pm k - i) + f(f \pm k - i)}{2}$ 5. 24. Proposita ergo acquatione $(X + \lambda n + \mu) (Y + \lambda n + \nu) = \zeta \zeta n n + 2 \zeta \eta n + \theta,$ $(X' + \alpha (\zeta n + g)) (Y' + \alpha (\zeta n + \zeta + \epsilon))$ $X_{i}Y_{i} + \alpha\left(\zeta_{n} + \zeta_{i} + \frac{j_{\xi-1}}{j_{+\xi-1}}\right)X_{i} + \alpha\left(\zeta_{n} + \varepsilon_{\xi}\right)Y_{i}$ $= \alpha \alpha \left(\zeta \zeta n n + \zeta \left(\zeta + \varepsilon - f + 2 \eta \right) + \left(\zeta + \varepsilon \right) \left(2 \eta - f \right) \right)$ = $\alpha \alpha \left(\zeta n + \zeta + \varepsilon \right) \left(\zeta n + 2 \eta - f \right)$ $= \zeta \zeta n n + \zeta (\zeta + \epsilon - f + 2 \eta) n + (\zeta + \epsilon) (2 \eta - f).$ $+aa(f+g-z\eta)(\xi n+\xi+\frac{fg-\eta}{fg-\eta}=0,$ ð vnde

-10-10

118 :

7))Y'

-Jg--0)X'

ιη)+fg-θ)=o.

×

X (=-1

- 2 7) 7

の記述

fequens substitutio: $g = \eta + V (\eta \eta - \theta)$ atque $\varepsilon = \frac{f \xi - \theta}{f + \xi - \eta}$, f= λ - ζ + μ - ν + η + ν (η η - θ);

Ş

prachebit hanc acquationem propolitae fimilem: $\mathbf{Y} = (\zeta - \lambda) \, n + g - \nu + \frac{2(\ell + \delta - 2)}{2} \frac{1}{2} \frac{1}$ $X = (\zeta - \lambda) + f - \mu + \frac{\xi(t + s - s)(\eta_s - t) + f \ell_s - t}{S},$

 $(X' + \zeta_n - \zeta + \varepsilon) (X' + \zeta_n + f)$ $= \zeta_{\eta} - \zeta_{\eta}$

E)

turis, eadem aequatio proposita ope harum substitutionum: 5. 28. Simili modo, manentibus iisdem abbreuia-

 $\mathbf{Y} := (\zeta - \lambda) \, n + g - \nu + \xi_{(n-2-\xi)}^{n-1} ,$ $X = (\zeta - \lambda) n + f - \mu + \frac{(1 - 1 - \ell)(1 - 1) - \ell k + \ell}{2},$

reducetur ad hanc aequationem propolitae fimilem:

$$(X^{i} - \zeta_{n} + \zeta_{-2})(Y^{i} - \zeta_{n} - f)$$

$$= \zeta_{n} + \zeta_{n} + \zeta_{n} - (Y^{i} - \zeta_{n} - f)$$

Ope ergo harum fenarum reductionum in §§. 18, 19, 24, -6)(27-8).

25, 27, 28, traditarum omnes huuusmodi acquationes in-finitis modis per fractiones continuas refolui poteruat.

ŝ Ā

(s + 5-

Refolutio acquationis

xxyy = aann + 2 a Bn + Y per § 18.

§. 29. Cum hic fit

 $\eta = \beta$ et $\theta = \gamma$, prodibit hace subditutio: $X = xx; Y = yy; \lambda = 0; \mu = 0; \nu = 0; \zeta = a;$ 는 기

ĩ

per §. 19. §. 31. Factis his tubalitutionibus: $xx = an - \frac{1}{2}a + \beta + \frac{1}{2}\frac{aa - \beta \beta + \gamma}{X}$, $xy = an + \frac{1}{2}a + \beta + \frac{1}{2}\frac{aa - \beta \beta + \gamma}{X}$, permet	The ob $A^{n} = A^{n}$ of $1^{n} = 1^{n}$ multiplicate concluse powers Refultion acquation is x + y y = -a + a + a + a + a + a + a + a + a + a		$x = an + \beta - \frac{1}{2}a + \frac{\beta\beta - \frac{1}{2}a - \gamma}{X_{i}},$ $y = an + \beta + \frac{1}{2}a + \frac{\beta\beta - \frac{1}{2}a - \gamma}{Y_{i}},$ quae deducit ad hanc fecundam acquationem: $(X' + an + \beta + \frac{1}{4}a)(Y' + an + \beta - \frac{1}{2}a) = a x n n + 2a \beta n + \gamma.$	
		$h = \gamma$	13 13 14 14	

<u>
後)
に(
第</u>

perucuitur ad hanc acquationem:

was not

dat has inditutiones: quae fecundum §. 19. reducta, ob (X-an-la-B)(Y-an+la-B)=aann+aaBn+y, λ=-«; μ=-ι«-β; ν=ι«-β; ζ=«; η=β; ξ=γ;

$$= 2an - a + 2\beta + \frac{2aa - \beta\beta + \gamma}{N},$$

Tode nafeitur bace noua acquatio:

 $(X'-an-\frac{1}{2}, -\beta)(X'-an+\frac{1}{2}a-\beta)=aann+2a\beta n+\gamma$ § 34. Hace acquatio viterius reducature, et ob

habebimus has inb lututiones: אשרמ; אשרזמאוא; אבזמרה; לשמ, אבה, טביא,

X = 2an - a + 2 a + 2 a a - B A try,

 $Y' \doteq aan + a + a\beta + \frac{aa - \beta\beta + \gamma}{\gamma''},$

hincque hanc acquationem novam:

 $(X^n - an - a - \beta)(X^n - an + a - \beta) = a ann + a a \beta n + \gamma_r$

worde fequences fabilitationes facile colligantar.

valor iphius x x sequenti fractione continua exprimeture $an - \frac{1}{2}a + \beta = N$ et $\beta\beta - \gamma = B$, 5. 33. Quodí ereo ad abbreviandum ponatur:

** 1

C S

hinc qui conuenit acquationi propositae Ponatur ergo vade oriuntur hae fubflitutiones: indeque hace acquatio nova: $y = an + g + \frac{(i+1-y)}{2} + \frac{(an+2)}{2} = (an+g)(1 + \frac{a+1}{2}) + g + \frac{(a+1)}{2}$ $xx = xn + f + \frac{(f + e - xn)(f + + f)}{X} = (an + f)(x + \frac{e + xn(f - n)}{X})$ (X + an + g)(Y + an + a + f) = aan n + a(a + a)λ=0; μ=0; ν=0; ζ=«; η=β; θ=γ; erit 5. 34. **=N+zaa-B $f = \beta + \gamma (\beta \beta - \gamma), g = a + \beta + \gamma (\beta \beta - \gamma)$ ** y == a a # # + 2 4 B # + Y: a = f et g = a + f, jg-1=aβ+2ββ-2γ+(a+2β) V (ββ-γ) et $\frac{j + \bar{\epsilon} - j}{2 + \bar{\epsilon}} = \beta + \bar{\gamma} (\beta \beta - \gamma) = \epsilon, \text{ its vt fit}$ $+(a+f)(2(\beta-f))$ $f+g-2\eta=\alpha+2V(\beta\beta-\gamma).$ xxyy = aann + 2 apn + y Cam hie fit Refolutio acquationis $2N + \frac{1}{4}\alpha \alpha - B$ -22) 22 () 24 24 4N+3 dar B. per §. 24. • N+****-B N+taa-B 2N- erc. f. 35. Y; erit (<u>11-96</u>), ا ج F + 2 B) # **6**. 35, erit vel $\int = \alpha + \delta$, vel $\int = \beta + \delta$; at prior positio non viterius deducit, vade posteriori vtendo erit winde ob quae hanc prachent acquationems ficque has obtinentur, tubilitationes: Auge of dabunt hanc acquationem; ficque sublimitiones 5. 37. Nunc igitur eft $\lambda = a; \mu = 2\beta - \delta; \nu = a + 2\beta - \delta, \zeta = a; \eta = a + \beta;$ $\theta = (a + \delta) (a + 2\beta - \delta),$ $\lambda = a; \mu = a + \delta; \nu = a + \delta; \zeta = a; \eta = \beta + \{a; \\ \theta = (a + \delta) (a\beta - \delta),$ $X = 2\beta - \alpha - 2\delta + \frac{(2\beta - \alpha - 2\delta)(\alpha + 2\beta - \alpha)}{(2\beta - \alpha - 2\delta + \frac{(2\beta - \alpha - 2\delta)(\gamma + 1) + 2\beta - \alpha)}{(2\beta - \alpha - 2\delta + \frac{(2\beta - \alpha - 2\delta)(\gamma + 1) + 2\beta - \alpha)}{(2\beta - \alpha - 2\delta + \frac{(2\beta - \alpha - 2\delta)(\gamma + 1) + 2\beta - \alpha)}},$ 5. 36. Pro huius acquationis reductione eff y = a (n + 1) + 8 + (a - 1) a = y (a + 1) s=a+d et f+s-an=a-ab+ab, (X' + an + a β - β) (Y' + an + a + a β - β) xx __ a + 6 + 6 - + 8 + 10 (a + 1 5. 35. Ponamus $\beta + \gamma (\beta \beta - \gamma) = \delta$, vt fit $f = \delta$; (X + a n + a + b) (Y + a n + a + b) $\int -(a\beta + a)f + (a + \delta)(a\beta - \delta) = 0,$ $= aann + 2a(a+\beta)n + (a+\delta)(a+2\beta-d).$ --- aann+a (a+2β) n+ (a +ð) (2β-ð). 100 (200 (200) 5

t,

----- VY ABUL LOUR L

5. 39. Profequamur hanc pofferiorem aequationer, quia magis fimilis eff fecundae, cum ex ea nafca- tur ponendo $\delta + \alpha$ pro δ et $\beta + \alpha$ pro β , vnde prodit hace fublitutio: $X^{\mu} = 2\beta - \alpha - 2\delta + \frac{(1\beta - \alpha - 2\delta)(\alpha n + 2\beta + \alpha - \delta)}{X^{\mu} = 2\beta - \alpha - 2\delta + \frac{(1\beta - \alpha - 2\delta)(\alpha n + 2\beta + \alpha - \delta)}{X^{\mu} = 2\beta - \alpha - 2\delta + \frac{(1\beta - \alpha - 2\delta)(\alpha n + 2\beta + \alpha - \delta)}{X^{\mu} = 2\beta - \alpha - 2\delta + \frac{(1\beta - \alpha - 2\delta)(\alpha n + 2\beta + \alpha - \delta)}{X^{\mu} = 2\beta - \alpha - 2\delta + \frac{(1\beta - \alpha - 2\delta)(\alpha n + 2\beta + \alpha - \delta)}{X^{\mu} = 2\beta - \alpha - 2\delta + \frac{(1\beta - \alpha - 2\delta)(\alpha n + 2\beta + \alpha - \delta)}{X^{\mu} = 2\beta - \alpha - 2\delta + \frac{(1\beta - \alpha - 2\delta)(\alpha n + 2\beta + \alpha - \delta)}{X^{\mu} = 2\beta - \alpha - 2\delta + \frac{(1\beta - \alpha - 2\delta)(\alpha n + 2\beta + \alpha - \delta)}{X^{\mu} = 2\beta - \alpha - 2\delta + \frac{(1\beta - \alpha - 2\delta)(\alpha n + 2\beta + \alpha - \delta)}{X^{\mu} = 2\beta - \alpha - 2\delta + \frac{(1\beta - \alpha - 2\delta)}{X^{\mu} = 2\beta - \alpha - 2\delta},$ quae ducit ad hanc aequationem: $(X^{\mu} + \alpha n + 2\beta + \alpha - \delta)(Y^{\mu} + \alpha n + 2\alpha + 2\beta - \delta)$ $= \alpha \alpha n n + 2\alpha (2\alpha + \beta) n + (2\alpha + \delta)(2\alpha + 2\beta - \delta).$ 5. 40.	5. 38. Si vtamur altero valore $\int = a + \delta$, fit $g = 2a + \delta$ et $\varepsilon = a + \delta$, et facta fublicatione $X' = a - 2\beta + 2\delta + \frac{(a - 2\beta + 2\delta)(a + 2\delta)(a + 2\delta)}{2}$, $Y' = a - 2\beta + 2\delta + \frac{(a - 2\beta + 2\delta)(a + 2\delta)(a + 2\delta)}{2}$, nancifiimur hanc acquationem: $(X'' + an + 2a + \delta)(Y'' + an + 2a + \delta)$ $= aann + (3a + 2\beta)n + (2a + \delta)(a + 2\beta - \delta)$.	$e^{-\frac{(\alpha+2\beta-2)}{2}\frac{(\alpha+2\beta-2\beta-2)}{2}} = \alpha + 2\beta - \delta.$ Quare hace fubfituitio: $X' = \alpha + \frac{(\alpha+2\beta-2\delta)}{2}\frac{(\alpha+\alpha+2\delta-\delta)}{2}$ $Y' = \alpha + \frac{(\alpha+2\beta-2\delta)}{2}\frac{(\alpha+2\beta-2\delta)}{2}$ dabit hanc acquationem: $(X' + \alpha n + 2\alpha + 2\beta - \delta) (Y' + \alpha n + 2\alpha + 2\beta - \delta)$ $= \alpha \alpha n n + \alpha (3\alpha + 2\beta) n + (2\alpha + 2\beta - \delta) (\alpha + \delta).$	$ff - 2 (a + \beta) f + (a + \delta) (a + 2\beta - \delta) = 0,$ fumatur valor $f = a + 2\beta - \delta,$ erit $g = 2a + 2\beta - \delta,$ atque
Juatio- nafca- prodit <u>(a-b)</u> <u>(a-b)</u> (j-b). (j. 40.) <u>छ</u> , ति	- ð)	·

ľ.

tione: ope harum fublitationum: reducitur ad hanc: posito brevitatis causa $\beta + \gamma (\beta \beta - \gamma) = \delta$ et $\alpha - 2\beta + 2\delta = A$, erit ad iftam reducitur: hascque viterius per has fublitutiones: Euleri Opusc. Anal. Tom. I. 2 2 11 $xn+\delta+A(an+\delta)$ §. 40. Haec acquatio porro vii in §. 38. trackata xxyy - a a nn + 2 a fn + y, $\frac{X^{II}}{Y^{III}} = \alpha - 2\beta + 2\delta + \frac{(\alpha - 2\beta + 2\delta)(\alpha + 2\alpha + \delta)}{2}$ 5. 41. Hinc ergo valor ipfius xx ex hac acqua-(X¹¹¹¹+an+=β+2α-δ)(Y¹¹¹¹+an+3α+2β-δ) $\mathbf{Y}^{\prime\prime\prime\prime} \simeq \mathbf{a} \left[\beta - \alpha - \mathbf{a} \, \delta \, + \, \frac{(\mathbf{a}\beta - \alpha - \mathbf{a})(\alpha n + \mathbf{a}\beta + \mathbf{s}\alpha - \mathbf{b})}{\mathbf{Y}^{\prime\prime\prime\prime\prime}} \right]_{\mathbf{Y}^{\prime\prime\prime\prime\prime}}$ XIII = 2 B - a - 2 d + (2B - a - 3)(an+ 2B + 2a - 3) $(X^{uu} + \alpha n + 3 \alpha + \delta) (Y^{uu} + \alpha n + 3 \alpha + \delta)$ -A-A(an+213-d) $= aann+2a(3a+\beta)n+(3a+\delta)(3a+2\beta-\delta).$ $= aann+a(5a+2\beta)n+(3a+3)(2a+2\beta-3)$ $A+A(\alpha n+\alpha+\delta)$ -A-A(an+a+2B-d) *****) 25 (\$13** $\Lambda + \Lambda(an+2a+d)$ A-A(an+2a+2(3-3))A+A(an+3a+d -A-A(a+3a+2β-δ) $\frac{A + etc.}{D}$ Hacc

Sin antem formulae 5. 27 hoc modo viterius reducentur, inuenitur hacc expressio ab initio irregularis; Hace antem expression eucluta prachet pro x x ipsum il-hud productum ex infinités factoribus constants, quod per exprimi poteft: methodum priorem elicitur, *x=an+d-(an+d) xx=an+o-(an+o) 9. 42. 1+41+=3-0 Ita fractio continua fimplicius hoc modo 1+27+28-8 - 25 (25-3) 32 (25-3) <u>α-(an+a+aβ-d)</u> A-(an+a+0) Itan+a+d 1+an+a+28-8 A-(an+2a+2A-d) A-(an+2a+d) I+an+2a+J 1+41+24+26-6 $\mathbf{A} = (an + 3a + \delta)$ A-(an+3a+23-d) I + 47 + 34 + 0 1+41+34+26-0 $\frac{A - (a a + 4 a + d)}{a + etc.}$ A - etc. 9 43 cetur, pro 2β valor aflumtus $\alpha + 2\delta - A$ fubfilituatur, infuperque pro $\alpha v - \alpha - \delta$ fubbatur N, hababitur hacc acqualitas: vbl pro A, a et N numeri quicunque allumi pollunt dente, fumendis X et Y negatiuls, petita $xx = a\pi + \delta + \frac{(10 - x - 1)(a\pi + \delta)}{2}$ シーズ \$. 43. Si vtraque expressio capite communi truayy == a (n +- 1) +- 8 +- <u>21-a-1)(anta+</u>), 5. 44. Prima fublitutio, ex refolutione practed N-a+A I-N-a-A A-N-a I-N-a-A xxyy = aan n + a a B + + Y, **Refolutio** acquationis 1+N A-N-2a+A ope §. 25. 4 + N + 8 A-N-sa ی د I +N + 3a - A A - N - 3a + A1-N+2a A - etc. A - etc. olito

uncque

t t

?quatio

5

duplici modo dati d, cum fit $\delta = \xi \pm V (\xi \xi - \gamma)$, ficque Subflitutio ergo quae prachet hanc acquationem: voi notandum eff, ex acquatione proposita 5. 47. Cum lex progressionis hic sit fatis maniiftam dabit acquationem; rude ob f= 3 a + d colligitur g= 7 a + d et a= 3 a + d. fuifiet, il vbique pro f alteros valores affumfifemus. binae eusmodi feries obtinentur, quasum altera proditura xx=an+d-(a-28+28)(an+d) X" == 2 an + 8 a + 2 8 - (1a-16+18)(an+sa+8) Y' - a a n + to a + 28 - (ra-st-st) (an++a+t) xxyy == aan x + 2 a 8 n + Y \$==a; n=={a+&; 1=(sa+d)(28-d); 1 -- a; 1 -- 5 a - d; 1 -- 3 a - d; §. 46. Nunc igitur codem modo esit (X^m - a n - 7 a - 8) (Y^m - a n - 4 a - 8) $(X^{1} - a \pi - 5 a - b) (Y^{1} - a \pi - 3 a - b)$ = aann + a(4a + 26) + (4a + 3)(28 - 3).2011+2a+28-(3a-28+28)(an+a+8) . == aann +- a (3 a +- 2 B) n +- (3 a +- 0) (2 B -- 0). 「「「「」」 29(25%。 zan+5a+20 (5a-23+20)(an+2a+0) U ça 2an+8a+20-(7a-20+20)(an+3a+0) 208+118+20-- erc. Alla

fecua-

a

*+3.

dine (a) Ś

quae ex superiori öritur, fi ibi pro'd scribatur -- x + 28 -- e, sub fuo valore in sequentibus retento fiet; xx=un+5.(a.28+23)(an+3) 5. 48. Sumamus in refolutions 5. 44. f=2⁶- δ_{1} Vt su g=2 α + 2⁶ $-\delta$ et e=2⁶ $-\delta$, erit fublimito: vnde refultat haec acquatio; Si hic functionus $f = a + a = -\delta$, haberemus formulam et a = a + b, ideoque: modo inuentam. Sit ergo f=++3, ent z=+a+3, lata dat 2an+a+28-(a+28-28)(an+28-8) (X'-an-2a-28+d) (Y'-an-a-28+d) X' == s α n + 3 α + 2 β - (<u>1 = - 5 + 3 β</u>)(<u>a = + e + 5</u>) Y == 2 an + 3 a + 2 8 - (a+3b=3) (an + a+3 + 1 + 1) X = 2 a n + a + 2 B - (a+26-23) (as + 26-3), $=a\mu \mu n + \mu (2\mu + 2\beta)n + (a + 3)(a + 2\beta - 3),$ f-2(a+8)f+(a+3)(a+28-3)=0. ÷ binos Falores ipfius f alternando, 244+34+28-20-(34+28-20)(an+a+28-0) At acquatio modo eruta cum §. 25. col-「「「」」) ので(2011年 Alia refoluțio, san+6a+46-26-(5a+26-28)(an++a+2(3-8) Aantoattoate etc. hino 10- 00 (0- 00) inio; 00 | | 1 hine tam -20- ctc. a+2a+23-0 تتل <u>0</u> posit, habebimus: quae ducit ad hanc acquationem; $(X^m-\alpha n-3\alpha-2\beta-\delta)(Y^m-\alpha n-2\alpha-2\beta+\delta)$ ob valores hincque ifta nafcitur acquatio prodibitque hace substitutio; Ynde nunc fumamus xx=an+0 (a-23+20)(an+0) quae ex praecedente orisur, fi ibi pro d fcribatur -a + d ncdae etit: f=a+ab-b, vt fit g= sa+ab-b et a=a+ab-b $(X^n - \alpha n - 4\alpha - \delta)(Y^n - \alpha n - 2\alpha - \delta)$ Y" = 2 a n + 7 a + 2 B - (2a+ 2 - 10)(an+ 2 + 2 + 2 + 2) X" = zaz+ 5 a + z β - (za+19-16) (an+a+19-6) ş. 30 5. 5x. Cum lex progressionis hine iam collig $f - (3\alpha + \alpha\beta) f + (\alpha + \delta)(\alpha + \alpha\beta - \delta) = 0;$ ==aann+a(4a+23)n+(2a+6)(2a+23-6). $= aann + a(3a + a\beta)n + (aa + \delta)(a + a\beta - \delta),$ 2an+a+23-(a+23-23)(an+23-3) Verum illa acquatio altero modo refoluta, 2an+3a+23-(3a 2(3+2d)(an+2a+d) 2an+3a+213-(3a-2,3+2d)(an+a+d) 2an+5a+23-(3a+23-20)(an+a+23-0) ant-bat-aß- etc. 2an+7a+23- ele quae

×

Þ

T TERAT DAMAN 7

vnde

۴,

$(X - \alpha n + \alpha - \delta) (Y - \alpha n - \delta)$ = $\alpha \alpha n n - \alpha (\alpha - \alpha \beta) n - (\alpha - \delta) (\alpha \beta - \delta),$ 5. 53. Hace acquatio porro feenndum eatdem for- mulas trachata praebet: $\lambda = -\alpha; \mu = \alpha - \delta; y = -\delta; \zeta = \alpha;$ $\eta = -\frac{1}{2}\alpha + \beta; \theta = (\delta - \alpha) (\alpha \beta - \delta),$ vade fit $\xi g - (\alpha \beta \cdot \alpha) g + (\delta - \alpha) (\alpha \beta - \delta) = 0,$ ergo	$y = 0, \ \zeta = a, \ \eta = \beta, \ \theta = \gamma, \ evit \ \beta = \delta, \ f = -a + \delta \ et$ $x = \delta; \ vnde \ fublitutio$ $x = an + \delta + (-x - 2\beta + z\delta)(xx - x + \delta),$ $y = an + \delta + (-x - 2\beta + z\delta)(xx - x + \delta),$ $(X + an - a + \delta)(X + an + \delta)$ $(X + an - a + \delta)(X + an + \delta) = -x + (\delta - a)(a\beta - \delta),$ Sumtis autom X et Y negativis, vt fit ex ξ . $z8.$ $x = an - a + \delta + (x + 2\beta - x\delta)(xx - x + \delta),$ $y = an + \delta + (x + 2\beta - x\delta)(xx - x + \delta),$ habebitur:	\sim
). 3em for- fit ergo	1 IL C4 V	+;- Ĕ ♥Ⅱ ₽,9, F
5. 55. Nunc igitur porro ceit: $\lambda = -\alpha; \mu = \alpha - g^{\dagger}; y = z\alpha - g^{\dagger}; \zeta = \alpha;$ $\eta = \beta - \frac{1}{2}\alpha; \vartheta = (g^{\dagger} - \alpha)(z\beta - z\alpha - g^{\dagger});$ hincque vel $g^{\dagger} = g^{\dagger} - \alpha, \text{ vel } g^{\dagger} = z\beta - z\alpha - g^{\dagger};$ $f = -3\alpha + g^{\dagger}$ aique $z = g^{\dagger}$. Euleri Opuse. Anal. Tom. I. E	5. 54. Retinearnus hanc litteratif g geminum va- lorem involuentem, et fequentes per g ¹ , g ¹¹ indicemus. Cum ergo hic fit $\lambda = -a; \mu = a - g; \nu = a - g; \zeta = a;$ $\eta = -a + \beta; \theta = (g - a)(2\beta - a - g);$ erit vel g ¹ =g - a; vel g ¹ = 2 \beta - a - g; hincque f = - 2 a + g ¹ et $\varepsilon = g^{1}$, ideoque $X^{1} = a a n - 3 a + g + g^{1} + (a\beta - a - g^{1})(an + s^{1}),$ $Y^{1} = a a n - a + g + g^{1} + (a\beta - a - g^{1})(an + s^{1}),$ vnde prodit haec acquatio: $(X^{1} - a n + a - g^{1})(Y^{1} - a n + a - g^{1})(z\beta - a - g^{1})$ $= a a n n + a (2\beta - 3 a) n + (g^{1} - a)(z\beta - a - g^{1}).$	ergo vel $g = \delta - a$, vel $g = a \beta - \delta$, et $f = -a + g$ are que $s = g$. Quaro inbilientio crit: $X = a \alpha n - a \alpha + g + \delta + \frac{(a\beta - a \alpha)(\alpha n - \alpha + \beta)}{2}$, $Y = a \alpha n + g + \delta + \frac{(a\beta - a \alpha)(\alpha n - \alpha + \beta)}{2}$, quab ducit ad hanc acquationem: $(X' - \alpha n + \alpha - g)(Y' - \alpha n + \alpha - g)$ $= a \alpha n n + \alpha (a \beta - a \alpha) n + (g - \alpha) (a \beta - \alpha - g)$.
ente: 2a-bi; 4= 2 ¹⁻² a-bi; 4= 2 ¹⁻² a-bi; 4= E	lineram g go per $g', g'' = a$ (-g; v = a (-g; v = a) (-g; v = a)	$\frac{2}{2}$

dabit hanc acquationem; 8={1==\$);8={{,5==*}};2"={₁5=*=};e"={₁5;*=*};e"={₁5;*=*};e"={₁5;*=*};ett. polito $\delta = \beta + V (\beta \beta - \gamma)$, fi pro litteris ξ , ξ' , ξ'' , ξ''' , ξ''' Quare fubfiltutio colligetur pro x x fequons valer: orietur hace acquatio: Quare ex fublikutione vude vel $\eta = \beta - 2.\alpha; \ \theta = (g' - \alpha)(z\beta - 3\alpha - g'')$ X" = 2 a n - 5 a + g" + g" + (18-11/2) $\lambda = -\alpha; \ \mu = \alpha - g^{\mu}; \ \nu = g \alpha - g^{\mu}; \ \xi = \alpha_{f}$ Y"= 2 an - 3 a + 8" + 8" + (20-5")(**+4"), ett == et - a, vet ett == = = = = a - ett 5. 57. His igitur colligendis ex acquatione propolita 5. 56. Iam pro huius acquationis refolutione eft: $(X^{\mu} - an + a - g^{\mu})(Y^{\mu} - an + 3a - g^{\mu})$ X" == 2 an - 4 a + g' + g" + (2B - 22") (22 - 2 + 2"), $(X^{III} - a \pi + a - g^{III})(Y^{III} - a \pi + 4 a - g^{III})$ Yu = 2 a n - 2 a + 8'+ 8" + (20-26)(a++6"), $f = -4 \alpha + g^{\mu}$ argue $e = g^{\mu}$. x+#8#=+##### $= aann + a(2\beta - 4\alpha)n + (g'' - a)(2\beta - 3\alpha - g'),$ ある日 1 11-13 12-84). (ال² سيد) one eft: 311, BIII -);etc. ropolita

¢ 4

1 1 1

cris cris **xx=onf**δ-(a-264-28)(an+8) nan+-20+1/1-1^{(a}-2(a-264-2^μ)(an+1ⁿ) nan+-20+1/1-1^{(a}-2(a-264-2^μ)(an+1ⁿ) 2an+-3a+1/1-1⁽ⁿ)(an+1ⁿ) 2an-+3a+1/1-1⁽ⁿ)(an+1ⁿ) 2an-+3a+1/1-1⁽ⁿ)(an+1ⁿ) 2an-+3a+1/1-1⁽ⁿ)(an+1ⁿ) fumto $\delta = \beta \pm V (\beta \beta - \gamma)$ pohatur f={s_1}; f={a+s_1}; f={a+s_2}; f={a+s_2} f= \$*1=8), f= {a, a, th_}; f= {a, a, t+}, f= }, f= {a, a, t+}, f=, n};ete. Ratuatur vt ante; 5.59. Simili modo acquationem propofitam fe-cundum 5. 24. tractando, fi posito $\delta = \beta + \gamma (\beta \beta - \gamma)$ etc. in infinitum variati poteft. qui ergo ob geminos valores fingularum o, g, g4, g4, g44 xx=an-a + 0+(a+ap-ab)(an-a+o) ##~~an+d~(29a-a-28)(an+d) -a-d+f-(28+a-2)(an+f) §. 58. Si cadem acquatio fimili modo, retentis va-loribus omnibus ambiguis, fecundum §. 25. refoluatur, ac 241-24-0-18-(212-28)(21-a-42) -f+f"-(25+-a-2f")(an+f") -m-f"+f"-(2f+-3a-2f")(an+f") **R *** 2an-3a+8+8'+(2f-2g') an 2+8', 2an-42+8'+8', an 2+8', -fⁿ+fⁿ-(<u>23+3a-2</u>fⁿ)(an+fⁿ) 2an+3a+j/4-jⁿ-(a-23+2jⁿ)(-a-J11+fn1-(23+-5a-2/111)(21-1.fn1 aan+4a+1"+1"~ ce fun + fun etc. <u>6</u> 60, ant

xx=an-a+6-(23-26+a)'an-a+d) 11 - 3 - 11/1 m Deinde veto ex §. 6. colligitur fen quaoratur elusmodi feries a, b, c, d, e, f, etc. vt fie ab = 1; b c = z; c d = 3; d e = 4; ef = 5; etc. . . addi poteit, acquiescamus, easque ad calum quempiam determinatum accommodemus. Sit feilicet x x y y ---- x x, ternis formis generalibus, quibus prima §, 33, exhibita ompes valorem, ipfing x x exprimerent; verum his quationer continuas exprimi pollit, videamus. fen per productum infigitum; $xy = n_1$ algue jam notavinus (12) fore bus innumerabiles aliae fractiones continuae elici, quae Hune igitur valorem ipitus x x quemadmodum per frac-8-5-(2]9-28)(an-a+8) 8-5-(2]9-28)(an-a+8) aa= 등 b== 등 e= 는 등 d== 등 e= 등 etc. $\delta = \beta + V(\beta \beta - \gamma)$, flatuatur xx == n: (+1); (+1); +1 x x - n, f x d x : V (z - z z) f x - i d x : V (z - z z) 5. 6r. Possent autem permisendis his reductioni-5. 6c. Porro ex 5. 27. fi poft e"-e'-(2|2-2e'-2c)(an-a+e" B₁₁-B₁₁+a-ctc, B₁₁-B₁₁+a-ctc, B₁₁-B₁₁-aB₁₁-4a)(atr-a+B₁₁) B₁₁-B₁₁-aB₁₁-a-ctc, **§**. 35: 100 e" - a ?; 23-3a-e"?; ((a#-\$+\$") - ecc. UJ=nx, euc. vie fie 2 ş. 33. 100 (A. 111 J. exhibita a his geadici, quas etc. . . . reductionitarta etc. quempiam per frac-5 G2 5. 63. Porro ex \$; 39. ob β=0; γ=0 et d=0; fi lumatur er B=0, vnde fit: It a = 1; a = 0; y = 0; erit fecuadum \$. 33. N=n-1, Sus ********** 272-24-24-22-22 ф. Од, (x-2)(n+1)<u>50 + (1 - 11 0) 0</u> 50 + (1 - 11 0) 0 -(1-2)')(1+j) an-1-9:4 Cum ightur pro acquatione xxyy = n n 1-1-(3-2)("fa-1)("+f" **1 3 7** (33 **4** Ē 21-1+25:4 Çф фа $\frac{1}{2(2n-1)+49}$ 27-1-49:4 23-14-etc. 0 4-1 1-1 1-1 10 E

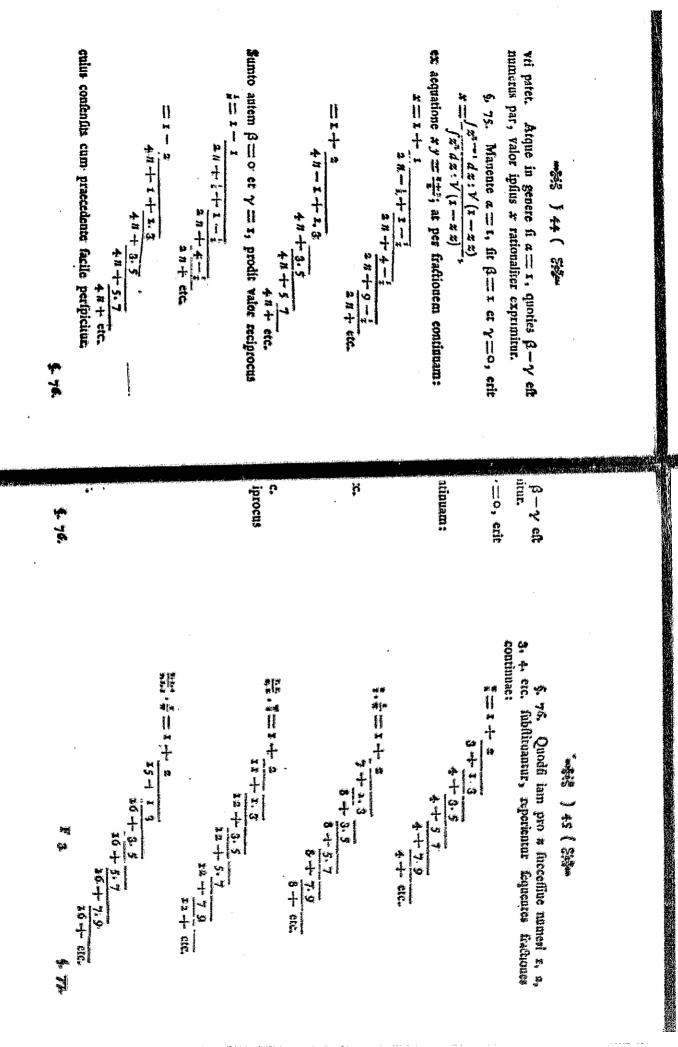
vel ex §. 58. sub lisdem denominationibus: <u>xx=n-1-(n-1)</u> erit ex §. 60, in qua fic xx1/2-1+(2-1) atque ex §. 57: xy = p - nq; ex superioribus constat este. 5, 64. Deinde polito $g = \begin{cases} -i \\ 0 \end{cases}; g' = \begin{cases} g - i \\ -i - g \end{cases}; g'' = \begin{cases} g' - i \\ -i - g' \end{cases}; g'' = \begin{cases} g' - i \\ -2 - g'' \end{bmatrix}; g''' = \begin{cases} g'' - i \\ -3 - g'' \end{bmatrix}; etc.$ $\frac{-1-(n-x_{j})}{g+2g(n-1+g)}$ $\frac{g''-g+x+2(1+g'')(n-1+g'')}{g''-g+x+2(1+g'')(n-1+g'')}$ $\frac{g''-g+x+2(1+g'')(n-1+g'')}{g''-g'+1+2(2+g'')(n-1+g'')}$ $\frac{g''-g''-g''+etc_{*}}{g''-g''+etc_{*}}$ 2#+1+J-(1+2J)#+J $xx = \left(p + nq\right), \frac{(p + nq)(p + (n + 1)q)}{(p + (n + 1)q)} \frac{(p + (n + 1)q)(p + (n + 1)q)}{(p + (n + 1)q)} \text{ ctc.}$ 5. 65. Generaliter ergo pro ferie a., b, c, d, etc. ab=p; bc=p+q; cd=p+2q; de=p+3q; ctc. 211-2+8-28(n-1+8) 2n+2+f+f-(1+2fi)(n+fi $\frac{-2g(n-1+g_1)}{2n-3+g+g'-2g'(n-1+g')}$ $\frac{2n-3+g+g'-2g'(n-1+g')}{2n-4+g'+g'-2g'(n-1+g'')}$ $\frac{2n-3+g+g'-2g'(n-1+g')}{2n-5+g''+g''-etc.}$ $\frac{2n+3+j'+f'u-(1+2f'')(n+f'')}{2n+4+j''+f''(1+2f'')(n+f'')}$ $\frac{2n+4+j''+f''-(1+2f'')(n+f'')}{2n+5+f''+f'''-\text{etc.}}$ 9 er etc. <u>_</u> ř. t je ភី n primo r pointo x = r. Tarn ob x x y y = q q n n + 2 p q n + p phabebimus $\alpha = q$; $\beta = p$ et $\gamma = p p$; hinc $\delta = p$. Qua-re ex §. 32. exit N = nq - q + p et B = o; ideoque et per formulas integrales: $f = \begin{cases} q + p \\ p \\ \end{cases}; \ f' = \begin{cases} q + f \\ q + 2p - f \\ q + 2p - f \\ \end{cases}; \ f'' = \begin{cases} q + f' \\ 2q + 2p - f'' \\ 2q + 2p - f'' \\ 2q + 2p - f'' \\ \end{cases}; \ f''' = \begin{cases} q + f'' \\ 2q + 2p - f'' \\ 2q + 2p - f'' \\ 2q + 2p - f'' \\ \end{cases};$ $xx = p + q(n - \frac{1}{2}) + \frac{1}{2}qq$ et ex §. 58. xx=qn+p+q(qn+p) habebimus ex §. 594 xx=qit+p-q(qi+p) $\begin{array}{c} e^{\mathbf{x}} \\ & , \\ f = \frac{q(qn+p)}{f^{-p}-q \cdots (q+2p-2f)(qn+f)} \\ & \\ f = \frac{f(qn+p)}{f^{-1}-f(q+2p-2f)(qn+f)} \\ & \\ & \\ f^{\mu}-f^{\mu}-q \cdots (3q+2p-2f^{\mu})(qn+f^{\mu}) \\ & \\ & \\ & \\ \hline & \\ f^{\mu}-f^{\mu}-q \cdots (3q+2p-2f^{\mu})(qn+f^{\mu}) \\ & \\ & \\ e^{te_{n}}} \end{array}$ 5. 63. At per reliquas formulas, fi ponamus $x = (p + nq) \cdot \frac{\sqrt{x^2 + (n + n)q - 1}}{\sqrt{x^2 + (n + n)q - 1}} \cdot \frac{d}{d} \cdot \frac{x}{2} \cdot \frac{y}{1 - x^2q}$ zqn+q+p+f-(q-2p+2f)(qn+f) $\frac{\frac{1}{2}}{2p+q(2n-1)+\frac{2}{2}q}\frac{q}{q}$ $\frac{2p+q(2n-1)+\frac{2}{2}q}{2p+q(2n-1)+\frac{2}{2}q}\frac{q}{q}$ eff. Jze-++++ d z: V (1 - 234) 2qn+2q+f+f-(q-2p+2f'(qn+f) 298+39+1'+1" cic. Q.

pro earum fumma fit habenda, etiamfi vbicunque in collec-		9. 08. Verum de his expretitionibus in infinitum excurrentibus tenendum eft., cas faepenumero feriebus divergentibus acquinalore, ita vt quo viterius earum va- lores colligamus, co magis a vertitate aberremus: quod	2qn-2q+q+g+2(<u>3-q)-3q+g+g+g+g+g+g+q+q+q+g)</u> 2qn-3q+g+g+g+ <u>2(+2)(qn-q+g)</u> (<u>3+q-q+g+g+g+g+g+g+g+g+g+g+g+g+g+g+g+g+g+g</u>	$g_{-2} = 2(p-g)(qn-q+g)$	5. 67. Deinde fi ponamus $g = \begin{cases} b - q \\ p \end{cases}; g = \begin{cases} g - q \\ 2p - q - g \end{cases}; g = \begin{cases} g - q \\ 2p - q - g \end{cases}; g = \begin{cases} g' - q \\ 2p - 2q - g' \\ 2p - 2q - g' \end{cases}; g = \begin{cases} g' - q \\ 2p - 2q - g' \\ 2p - q' \\ 2p - q - g' \\ 2p -$	whi ex tribus numeris datis p , q , π , bini quicunque ne- gatiui affumi poffunt, quandoquidem acquatio refoluenda hinc nullam mutationem patitur.	
i i i i	quae licet inus	quod			Ř	p i da c	
Eulert Opuse. Anal. Tom. I.	§. 70. Ex hac iam acquatione valores X et Y per formulas fupra datas infinitis modis exhiberi pollint, ex quibus §. 19. maxime connergentein fuppeditat. Cum autem fit	fine $(X - an - \gamma) (Y - an - \gamma) = (an + \beta) (an + \gamma)$	$(\beta - \gamma) X Y - A(an + \gamma) X - A(an + \gamma) Y = A A(an + \gamma),$ Sit $A = \beta - \gamma$, feu $x = z + \frac{\beta - \gamma}{2}$ et $y = z + \frac{\beta - \gamma}{2}$, habeblumoue	$x = \frac{\int x^{n+1} + y^{-1} dx; Y(x - x^{n})}{\int x^{n+1} + y^{-1} dx; Y(x - x^{n})},$ Cum nunc, fi effet $n = \infty$, foret $x = y = x$, valores x et y continuo magis ad valiatern accedent; quate ponatur $x = x + \frac{1}{2}$ et $y = x + \frac{1}{2}$, fietque $(X + A)(Y + A) = \frac{n+1}{2} X Y$, feu	in que it $ab = \frac{1}{2}; \ bc = \frac{1}{2} \frac{1}{2}; \ cd = \frac{1}{2} \frac{1}{2}; \ dc = \frac{1}{2} \frac{1}{2} \frac{1}{2}; \ ctc.$ hincque in genere $xy = \frac{1}{2} \frac{1}{2};$ ac habebitur $x = \frac{1}{2} \frac{1}{2}; \ \frac{1}{2} \frac{1}{2}; \ \frac{1}{2} \frac{1}{2}; \ \frac{1}{2}; \ \frac{1}{2};$ $\frac{1}{2};$	-collectione partium fubfliterinaus, verum nunquam attia- gamus. 5. 69. Examinemus etiam feriem æ, ø ₇ r, d, ore.	
>	valores X et Y xhiberi pofiint, ppeditat. Cum	3) (an+y).	=AA(an+y),	r, valores n et quare ponatur	· ;::-++	aunquam attia- a, b_r t, d_1 ore.	

S B B A Basel

§. 43,

 5. 72. Iam cum hic fit λ=-α; μ=-2α-iβ-iγ; ν=2α-iβ-iγ; ζ=α; η=θ+γ; θ=βγ; orletur hace fublimulo; X == 	$\begin{array}{l} Y' = 2 an + a + \beta + \gamma + \frac{\pi a \alpha - \frac{\pi}{2} (\beta - \frac{\pi}{2} \gamma)}{Y'_{u}}, \\ quae \ praebet \ iftam \ aequationem: \\ (X'' - an - 2a - \frac{1}{2}\beta - \frac{\pi}{2} \gamma) (Y'' - an + x - \frac{\pi}{2}\beta - \frac{\pi}{2} \gamma) \\ = (an + \beta) (an + \gamma). \end{array}$	$\lambda = -\alpha; \ \mu = -\alpha - \frac{1}{2}\beta - \frac{1}{2}\gamma; \ \nu = \alpha - \frac{1}{2}\beta - \frac{1}{2}\gamma; \ \zeta = \alpha;$ $\eta = \frac{\beta_{\pm}\gamma}{2} \text{ et } \theta = \beta\gamma,$ $\text{Yt fit } \eta\eta - \theta = \frac{1}{2}(\beta - \gamma)^{*}, \text{ orietur fasc fublicatio:}$ $X' = 2\alpha\pi - \alpha + \beta + \gamma + 4\alpha\alpha - \frac{1}{2}(\beta - \gamma)^{*},$	(X' - $\alpha n - \alpha - \frac{1}{2}\beta - \frac{1}{2}\gamma$) (Y' - $\alpha n + \alpha - \frac{1}{2}\beta - \frac{1}{2}\gamma$) = $(\alpha n + \beta)(\alpha n + \gamma)$. 5. 70. Quodít hace acquatio denno fimili modo enoluatur, ob	Here $X = 2\alpha n - \alpha + \frac{1}{2}\beta + \frac{1}{2}\gamma + \frac{\alpha \alpha - \frac{1}{2}(\beta - \gamma)^{2}}{N}$ Here a contract is a normalized analytic.	
× 4	ž	11 	nodo V	na y nina kanan dikan filingi filingi ting	та Z
x===+=2 2n+=== 2n+=======================	5. 74. Percurramus quaedam exempla, fitque pri- mo $a = x$, $\beta = z$ et $\gamma = o$, erit $x = \frac{(z^{n-1}, dz; Y(x - zz))}{(z^{n+1}, dz; Y(x - zz))} = \frac{n+x}{n}$, ideooue	ita vt fit $x = \frac{\int z^{xx+y-1} dz; y'(x-z^{x})}{\int z^{xx+y-1} dz; y'(x-z^{x})}$	5. 73. Hoe modo progrediendo confequemur tau- dem acquationis propositae $x y = \frac{a_1+b}{a_1+b}$ hanc resolutionem: $x=1+\frac{\beta-\gamma}{2a_1-a_1+\frac{\beta}{2}(1-\gamma)^2}$	$Y'' = x a n + a + \beta + \gamma + \frac{2 a a - \frac{1}{2} (\beta - \gamma)}{y'' - \alpha n + 3 a - \frac{1}{2} \beta - \frac{1}{2} \gamma}$ $(X'' - a n - 3 a - \frac{1}{2} \beta - \frac{1}{2} \gamma) (Y'' - \alpha n + 3 a - \frac{1}{2} \beta - \frac{1}{2} \gamma)$ $= (a n + \beta) (a n + \gamma).$	$X' = 2a\pi - \beta + \gamma + \frac{\beta + 2\pi}{\lambda^{m}}$



 $s = \frac{1}{x-1} - m + \alpha + \delta,$ Verum eft §. 57. Hine etiam vicilim huiusmodi Tractionum continuarum valores inteffigari potefunt, Sie eaun pro-polita hace fractio: crit et 2an = m - 25 - 2 Y, ficque etit \$-1=28 et 2an+\$+1=m; Inde \$=28+2 **Vnde** fi ponatur 5 -- 2 2 -- 2 8 $x = \int \frac{e^{1}m - \delta - 1}{\int z^{\frac{1}{4}} \frac{m - \delta - 1}{1 + \delta - 1} \frac{dz : V(1 - z^{\frac{1}{4}})}{dz : V(1 - z^{\frac{1}{4}})}$ e fi conatur $J := \frac{(m-a+b)Q-(m-a-b)P}{P-Q},$ 5. 78. Hinc fi ponatur d=eY-z, vt fit $\frac{1}{\frac{2\pi}{V(1-z^{*})}} = P \text{ of } \int \frac{1}{V(1-z^{*})} = Q_{j}$ m+4 a a - 88 <u> 32-886 + 44</u> m+16 a a + 88 - Siz) 34 (Sizit enim pro-- β===δ+γ 10 H ve fit 11 ob zwo mania wide i zwide i zw vbi notandum eft integralia R et S ita funi debere, vz pojuo.zemo cuanefeant, tum vero poni zem r. erit P = R - S Y - i; et Q = R + S Y - i; ideoque $s = \frac{1}{2} \frac$ $\frac{x^2 m - 1}{V (1 - x^2)} \frac{dz \operatorname{cof.} el x}{dz} = \operatorname{R} \operatorname{ot} \int \frac{x^2 m - 1}{V (1 - x^2)} \frac{dz \operatorname{fo.} el x}{dz} = \operatorname{S},$ · || 884-00 ない)なくいい VARIA

Ì