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Graphs - a quick look

A graph G (undirected) has a set of vertices and a set of
edges. Each edge joins two (possibly not distinct) vertices.
An edge from a vertex to itself is called a loop.
Two vertices are connected if there is a path of edges joining
them. Connectedness is an equivalence relation that partitions
the graph into connected components.
A graph is connected if it has one connected component.
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Graphs - example

This graph has two connected components, one loop, and one
set of multiple edges.
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Dynkin diagrams

Dynkin diagrams encode the geometry of the root system of a
semisimple Lie algebra & can be used to classify simple Lie
algebras. Extended Dynkin diagrams perform the same role for
affine Lie algebras. [cf. Kac]
For type ADE simple Lie algebras, the Dynkin diagram:

is connected, but has neither loops nor multiple edges,

has no vertex of order 4, and

has the property that removing a vertex gives another
Dynkin diagram.

Extended Dynkin diagrams: same as above, except only one
has a vertex of order 4, and it only has 5 vertices.
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ADE Dynkin diagrams

(subscript = # of vertices)
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Extended ADE Dynkin diagrams

(subscript +1 = # of vertices)
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Fusion Algebras

F is a fusion algebra if F is a commutative, associative ring
with a Z≥0-basis {B1 = 1F ,B2, . . . ,B`} that is closed under ∗,
a “dual” isomorphism of F . Let B∗i = Bi∗ . Moreover, if the
nki ,j ∈ Z≥0 satisfy

Bi · Bj =
∑
k

nki ,jBk , then nki ,j = nj
∗

i ,k∗ .

The motivating example of a fusion algebra is the
representation theory of finite groups over C (with ∗ as
contragredient), but fusion algebras also arise in the
representation theory of other algebraic objects, like
finite-dimensional (quasi-)Hopf algebras.
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Example: S3 irreducibles

For us, F is a ring with Z-basis consisting of self-dual
B1 = 1F , B2 = sgn, and B3, and with multiplication given by:

B2 · B2 = B1

B2 · B3 = B3, and

B3 · B3 =
∑
i

Bi

on the basis elements, and is extended linearly.
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Example: Z3 irreducibles

Here, F is a ring with Z-basis consisting of B1 = 1F (which is
self-dual), B2, and B3 = B∗2 = B2∗ , and with multiplication
given by:

B2 · B2 = B3

B3 · B3 = B2

B2 · B3 = B1,

extended linearly. Note that these three representations
behave like Z3 itself.
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Fusion Graphs

Given a fusion algebra F and a basis element Bk ∈ F , define a
(directed) fusion graph Gk : the vertices of Gk are {v1, . . . , v`},
and the number of edges from vi to vj is njk,i . If njk,i = nik,j for
all i , j , then we consider Gk undirected.

Lemma: Gk is undirected if k∗ = k .
Proof: njk,i = nj

∗

k∗,i∗ = nik,j . 2

One can define GB for any element B of the fusion algebra; GB
is undirected if B = B∗. We choose self-dual B from now on.

Examples: G3 for S3 and G2+3 for Z3.
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Fusion Graphs - Examples

G3 for S3 G2+3 for Z3
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Fusion Graphs - Properties

Let B = Bk .

GB is connected if every basis element appears in some
power of B . (For groups, true if B is faithful.)

GB has loop if there is a j such that njk,j > 0.

GB has multiple edges if there exist i , j such that njk,i > 1.

These can be easily extended to B =
∑

k mkBk .
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The Question

Can each extended ADE Dynkin diagram arise as a fusion
graph? If so, then which fusion graph (e.g., which group,
which quasi-Hopf algebra)?
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Finite Subgroups of SO(3)

Recall SO(3) = {M ∈ M3(R) | MT = M−1, det(M) = 1}.
The nontrivial finite subgroups of SO(3) are:

cyclic (Zn) (order n > 1)

dihedral (D2n) (order 2n, n > 1)

A4 (order 12) (tetrahedron)

S4 (order 24) (octahedron/cube)

A5 (order 60) (icosahedron/dodecahedron)
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Finite Subgroups of SU(2)

Recall SU(2) = {U ∈ M2(C) | ŪT = U−1, det(U) = 1}, and
that 1→ {±I2} ↪→ SU(2)→ SO(3)→ 1 is a short exact
sequence. Thus the nontrivial finite subgroups of SU(2) are:

cyclic Zn (order n, n > 1)

binary dihedral BD2n (order 4n, n > 1)

binary tetrahedral BT (order 24)

binary octahedral BO (order 48)

binary icosahedral BI (order 120)

[Klein, 1876]
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Finite Subgroups of SU(2)

Recall SU(2) = {U ∈ M2(C) | ŪT = U−1, det(U) = 1}, and
that 1→ {±I2} ↪→ SU(2)→ SO(3)→ 1 is a short exact
sequence. Thus the nontrivial finite subgroups of SU(2) are:

cyclic Zn (order n, n > 1) [n irreps]

binary dihedral BD2n (order 4n, n > 1) [n + 3 irreps]

binary tetrahedral BT (order 24) [7 irreps]

binary octahedral BO (order 48) [8 irreps]

binary icosahedral BI (order 120) [9 irreps]

[Klein, 1876]
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Natural representation

For each finite subgroup of SU(2), we wish to construct a
fusion graph corresponding to the “natural” two-dimensional
representation V (i.e., as elements of SU(2)). For each of the
binary groups, V is irreducible and self-dual. For Zn,
V = W ⊕W ∗, where W is a generator of the fusion algebra.
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McKay Correspondence

Let G be a finite subgroup of SU(2) and let V be as above.
Then the fusion graph GV is an extended Dynkin diagram
[McKay, ’80]. Specifically:

group Zn BD2n BT BO BI
graph Ãn−1 D̃n+2 Ẽ6 Ẽ7 Ẽ8

# vertices n n + 3 7 8 9
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Quantum Double of a Finite Group [DPR, ’90]

Let G be a finite group with identity element 1G and let
eg : G → C∗ satisfy eg (h) = δg ,h. The quantum double of a
finite group, D(G ) = (CG ∗ ⊗ CG , u,∆, ε, S) is a Hopf
algebra, where

(eg ⊗ x) · (eh ⊗ y) = δg ,xhx−1 (eg ⊗ xy)

u(1) =
∑
h∈G

(eh ⊗ 1G )

∆ (eg ⊗ x) =
∑
h∈G

(eh ⊗ x)⊗ (eh−1g ⊗ x) , and

ε (eg ⊗ x) = δg ,1G
S (eg ⊗ x) =

(
ex−1g−1x ⊗ x−1

)
for all g , h, x , y ∈ G .
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Representations of D(G )

Let K be a conjugacy class of G , and let

D(K ) = span{(eg ⊗ x) | g ∈ K , x ∈ G}.

Then each D(K ) is a two-sided ideal, and D(G ) =
⊕

K D(K ).

Rep’ns of D(G ) are induced from rep’ns of centralizers of G .
Pick gK ∈ K and define CK := CG (gK ). Let M be an
irreducible CK -module with character ρ. Then M can be
induced up to M(K , ρ), a D(K )-module.
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Fusion algebra for D(G )

Theorem:

M(K , ρ)⊗M(L, ψ) =
⊕
J⊆KL

M(J , σ)

for those σ ∈ CJ whose restriction to
Q = r−1CK r ∩ s−1CLs ∩ CJ is contained in ρ(r) ↓Q ⊗ψ(s) ↓Q ,
where ρ(r)(x) = ρ(rxr−1), and r , s are specific coset
representatives of CK ,CL satisfying gJ = (r−1gK r)(s−1gLs).
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Components of D(G ) fusion algebra

Corollary: If K = {1G} = 1, then we have

M(1, ρ)⊗M(L, ψ) = M(L, ρ↓CL
⊗ψ).

Consequence: The D(G ) fusion graph for M(1, ρ) has
connected components labeled by conjugacy classes of G .
Moreover, the connected component corresponding to L of the
fusion graph is GV for V = ρ↓CL

in CL.
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“Orbifold” McKay Correspondence

Let G ≤ SU(2), |G | <∞.

Then G is one of the binary types listed earlier, or cyclic
(as are the CL).

If V is the natural two-dimensional rep’n of G , with
character ρ, then M(1, ρ) = V is (also) a D(G )-module.

GV will thus be made of connected components, one for
each conjugacy class.

The component corresponding to the conjugacy class L is
the extended Dynkin diagram for CL.

Goff Dynkin Diagrams and Fusion Algebras 24/ 34



Graphs Fusion Algebras Fusion Graphs McKay Correspondence(s)

“Orbifold” McKay Correspondence

Let G ≤ SU(2), |G | <∞.

Then G is one of the binary types listed earlier, or cyclic
(as are the CL).

If V is the natural two-dimensional rep’n of G , with
character ρ, then M(1, ρ) = V is (also) a D(G )-module.

GV will thus be made of connected components, one for
each conjugacy class.

The component corresponding to the conjugacy class L is
the extended Dynkin diagram for CL.

Goff Dynkin Diagrams and Fusion Algebras 24/ 34



Graphs Fusion Algebras Fusion Graphs McKay Correspondence(s)

“Orbifold” McKay Correspondence

Let G ≤ SU(2), |G | <∞.

Then G is one of the binary types listed earlier, or cyclic
(as are the CL).

If V is the natural two-dimensional rep’n of G , with
character ρ, then M(1, ρ) = V is (also) a D(G )-module.

GV will thus be made of connected components, one for
each conjugacy class.

The component corresponding to the conjugacy class L is
the extended Dynkin diagram for CL.

Goff Dynkin Diagrams and Fusion Algebras 24/ 34



Graphs Fusion Algebras Fusion Graphs McKay Correspondence(s)

“Orbifold” McKay Correspondence

Let G ≤ SU(2), |G | <∞.

Then G is one of the binary types listed earlier, or cyclic
(as are the CL).

If V is the natural two-dimensional rep’n of G , with
character ρ, then M(1, ρ) = V is (also) a D(G )-module.

GV will thus be made of connected components, one for
each conjugacy class.

The component corresponding to the conjugacy class L is
the extended Dynkin diagram for CL.

Goff Dynkin Diagrams and Fusion Algebras 24/ 34



Graphs Fusion Algebras Fusion Graphs McKay Correspondence(s)

“Orbifold” McKay Correspondence

Let G ≤ SU(2), |G | <∞.

Then G is one of the binary types listed earlier, or cyclic
(as are the CL).

If V is the natural two-dimensional rep’n of G , with
character ρ, then M(1, ρ) = V is (also) a D(G )-module.

GV will thus be made of connected components, one for
each conjugacy class.

The component corresponding to the conjugacy class L is
the extended Dynkin diagram for CL.

Goff Dynkin Diagrams and Fusion Algebras 24/ 34



Graphs Fusion Algebras Fusion Graphs McKay Correspondence(s)

Example: D(BT)

Here, we use

BT ∼= {±1,±i ,±j ,±k , 1

2
(±1± i ± j ± k)}

where i , j , k are as in quaternions. (cf. Hurwitz quaternions)

gK 1 −1 i 1
2
(1 + i + j + k) (4 classes)

|K | 1 1 6 4 (4 times)
CG (gK ) G G Z4 Z6 (4 times)

diagram Ẽ6 Ẽ6 Ã3 Ã5 (4 times)
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Example: D(BT)

1
i -1
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Generalized QDFG, D(G ,N) [G & Mason, ’10]

Let G be a finite group with N � G , and let Ḡ = G/N . One
can define a generalization of the quantum double of a finite
group, D(G ,N) = (CḠ ∗ ⊗ CG , u,∆, ε, S), via

(eḡ ./ x) · (eh̄ ./ y) = δḡ ,xh̄x−1 (eḡ ./ xy)

u(1) =
∑
h̄∈Ḡ

(eh̄ ./ 1G )

∆ (eḡ ./ x) =
∑
h̄∈Ḡ

(eh̄ ./ x)⊗
(
eh̄−1ḡ ./ x

)
ε (eḡ ./ x) = δḡ ,1Ḡ , and

S (eḡ ./ x) =
(
ex−1ḡ−1x ./ x

−1
)

for all ḡ , h̄ ∈ Ḡ , x , y ∈ G .
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Representations of D(G ,N)

Rep’ns of D(G ,N) are still induced from rep’ns of centralizers
of elements of Ḡ in G (i.e., stabilizers for the conjugation
action; cf. abelian extensions of Hopf algebras [Kashina,
Mason, Montgomery, ’02]). Let CL̄ := CG (ḡL̄). A similar
formula,

M(1̄, ρ)⊗M(L̄, ψ) = M(L̄, ρ↓CL̄
⊗ψ),

still holds. So we can still calculate fusion with such an
M(1̄, ρ) in the appropriate centralizer, and thus, the connected
component corresponding to L̄ of the fusion graph is GV for
V = ρ↓CL̄

in CL̄.
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Orbifold McKay Correspondence

Let G ≤ SU(2), |G | <∞, with −I2 ∈ G , and let
N = {±I2}� G . Then G is one of the binary types listed
earlier, or cyclic of even order, and Ḡ is cyclic, dihedral, A4,
S4, or A5.
Let ρ be the character of the natural two-dimensional
representation of G . Then M(1̄, ρ) is a D(G ,N)-module whose
fusion graph will be made of connected components indexed
by conjugacy classes of Ḡ . The component corresponding to L̄
is the extended Dynkin diagram corresponding to CL̄.
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Example: D(BT,N), Ḡ ∼= A4

ḡ 1̄ (12)(34) (123) (2 classes)
|K̄ | 1 3 4 (2 times)

CG (ḡ) G BD4 Z6 (2 times)

diagram Ẽ6 D̃4 Ã5 (2 components)
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Example: D(BT,N), Ḡ ∼= A4

(12)(34)

(123) (132)

1
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Example: D(BO,N), Ḡ ∼= S4 (from [GM, ’10])

ḡ 1̄ (12) (12)(34) (123) (1234)
|K̄ | 1 6 3 8 6

CG (ḡ) G BD4 BD8 Z6 Z8

diagram Ẽ7 D̃4 D̃6 Ã5 Ã7
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Example: D(BO,N), Ḡ ∼= S4

(1234)

(12)(34)

(12)

1

(123)
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More . . .

Twisting to Dω(G ,N), ω ∈ H3(G ,C∗) [GM, ’10]

Labeling the vertices with integers

Kleinian singularities, matrix factorizations

65 arXiv titles contain “McKay correspondence”

Thank you!
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