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Abstract

Chiral perturbation theory predicts that in quantum chromodynamics (QCD), light dynamical

quarks suppress the gauge-field topological susceptibility of the vacuum. The degree of suppression

depends on quark multiplicity and masses. It provides a strong consistency test for fermion for-

mulations in lattice QCD. Such tests are especially important for staggered fermion formulations

that lack a full chiral symmetry and use the “fourth-root” procedure to achieve the desired number

of sea quarks. Over the past few years we have measured the topological susceptibility on a large

database of 18 gauge field ensembles, generated in the presence of 2+1 flavors of dynamical asqtad

quarks with up and down quark masses ranging from 0.05 to 1 in units of the strange quark mass

and lattice spacings ranging from 0.045 fm to 0.12 fm. Our study also includes three quenched

ensembles with lattice spacings ranging from 0.06 to 0.12 fm. We construct the topological suscep-

tibility from the integrated point-to-point correlator of the discretized topological charge density

FF̃ . To reduce its variance, we model the asymptotic tail of the correlator. The continuum extrap-

olation of our results for the topological susceptibility agrees nicely at small quark mass with the

predictions of lowest-order SU(3) chiral perturbation theory, thus lending support to the validity

of the fourth-root procedure.

PACS numbers: 11.15.Ha, 12.38.Gc, 12.38.Aw, 12.39.Fe
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I. INTRODUCTION

The rich topological structure of the QCD vacuum is known to be responsible for many

interesting nonperturbative effects, such as the chiral anomaly and chiral symmetry breaking,

instantons, and the large mass of the η′ meson. Among the wide variety of ways of looking

at these phenomena, one may consider the effect that topological charge has on the kernel

of the Dirac operator. It has broad implications. For example, it is intimately connected

with the value of the chiral condensate [1].

The topological susceptibility χt characterizes the tunneling rate between topologically

distinct vacua by instantons and shows up in low energy phenomenology through the Witten-

Veneziano formula [2, 3] and in chiral perturbation theory. A gauge configuration with

topological charge ν requires at least ν fermionic zero-modes of the Dirac operator. The

effect of quark mass on the topological susceptibility can be seen by separating the fermion

determinant for a particular gauge field configuration into zero and non-zero modes. For Nf

flavors we have [1, 4]

Nf∏

f=1

det(D/ +mf ) =
Nf∏

f=1



m|ν|
f

∏

λ>0

(λ2 +m2
f)



 , (1)

where λ is the imaginary part of the eigenvalue of D/ . Thus gauge configurations of non-

trivial topology tend to be suppressed as any one of the quark masses approaches zero.

However, this effect is compensated at increasing volume by a growing tendency of gauge

field fluctuations to produce nontrivial topology. Chiral perturbation theory tells us [1] that

the outcome of the competition is controlled by the parameter x = V Σm′, where Σ is the

chiral condensate, V is the Euclidean space-time volume, and m′ is the reduced mass

1/m′ = 1/m1 + 1/m2 + . . . . (2)

When at least one quark mass gets small at fixed volume (the “epsilon” regime, x ≪ 1),

gauge configurations with nontrivial topological charge are strongly suppressed, as implied

by Eq. (1). In the physical regime, in which x ≫ 1, which is the case for our study,

topologically nontrivial configurations are not suppressed. Instead, leading order chiral

perturbation theory requires that the mean squared topological charge be equal to the

parameter x:

〈ν2〉 = V Σm′, (3)
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where the angle brackets represent an average over gauge fields. Thus the topological sus-

ceptibility,

χt = 〈ν2〉/V = Σm′, (4)

remains finite in the large-volume limit. Even so, it is still suppressed as m′ → 0.

While lattice simulations of QCD have enjoyed considerable success in recent years, with

errors on hadronic spectroscopy computations at the 1–2% level, simulations have struggled

to reproduce this dependence of χt on both mf and Nf , until recently. This progress has

come with improvements in lattice fermion technology, which has given much more control

over chiral symmetry and lattice artifacts.

In this article we present results for the dependence of χt on the quark mass (through the

taste-singlet pion mass) using improved staggered fermions (asqtad formulation). Descrip-

tions of the asqtad formulation have been given elsewhere [5]. To eliminate contributions

from unwanted fermion doublers, the staggered formulation takes the fourth root of the

fermion determinant 4

√
det[D/ +mf ] for each quark (“fourth-root procedure”), which may

raise questions about flavor counting. For a discussion of the issues, please see [5] and ref-

erences therein. The primary purpose of our study, then, is to test the ability of the fourth

root procedure to produce the correct number of sea quarks. Since the topological sus-

ceptibility is measured directly on the gauge field configuration without the involvement of

valence quarks, it is directly sensitive to sea quark effects. We will show that the continuum

extrapolation of our results agrees well with lowest-order SU(3) chiral perturbation theory.

This article summarizes results of calculations carried out over the past few years on

ensembles with (2 + 1) flavors of asqtad quarks as they were being generated (see the Ap-

pendix). We continue to use the methodology of our previous work at larger lattice spacing

and quark mass [6–8] with some refinements which appear here. The key features of our

approach are these:

1. obtaining the square of the topological charge from the integral of the two-point cor-

relator of the topological charge density.

2. reducing the variance of the integral by modeling the asymptotic form of the correlator

in terms of known hadronic contributions, and

3. analyzing the quark-mass and lattice-spacing dependence of the resulting susceptibility

in terms of predictions from rooted staggered chiral perturbation theory.
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In the following section, we discuss the details of our method for calculating the topolog-

ical susceptibility on the lattice. We present our results and analysis in Sec. III. Finally, we

comment on our results in the Conclusions, Sec. IV. The Appendix lists the parameters of

the gauge field ensembles used in this study.

II. METHODOLOGY

A. Definition of the topological susceptibility

We introduced the topological susceptibility in Eq. (4) as the mean squared charge per

unit volume: χt = 〈ν2〉/V . The net topological charge ν is the integral over Euclidean

space-time of the topological charge density,

ρ(x) =
1

32π2
F a
µνF̃

a
µν . (5)

The susceptibility is then given by the integral of the correlator of the charge density,

provided the integral is well defined.

χt =
∫

d4xC(r) with C(r) = 〈ρ(x)ρ(0)〉 , (6)

where r = |x|. Because the exponential decay of the correlator at large r is set by nonzero

hadron masses, we see that the susceptibility is properly regarded as a local observable,

i.e., it can be defined in terms of a correlator that has finite physical range. We use this

definition of the susceptibility, coupled with a smeared lattice discretization of FF̃ .

In the continuum limit the integral definition above is problematic. The unregulated

correlator C(r) is nonintegrable: it has a positive, divergent contact term (at the origin)

and, close to the origin, a compensating negative ultraviolet singularity of order (up to

possible logarithms) r−8 [9–12]. Cancellation is required in order to produce the expected

finite integral Eq. (4). To circumvent this mathematical difficulty Lüscher formulated a

definition of the topological susceptibility in terms of a product of pseudoscalar and scalar

densities of Ginsparg-Wilson quarks [13]. Since the definition requires computing all-to-all

quark-line disconnected correlators, it is more difficult to implement, and, to our knowledge,

it has not yet been put into practice.

For present purposes we resort to the naive definition in Eq. (6) and trust that the lattice

cutoff and a smoothed definition of ρ(x) regulate the compensating singularities enough over
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a range of reasonably small lattice spacings that we can test the expected suppression of

the topological susceptibility. In our present scheme we fix the smoothing scale in lattice

units as we take the lattice spacing to zero. Our numerical simulation provides a practical

test of the limitations of such a scheme. If it fails, as the lattice spacing is decreased, we

would expect to encounter a growing variance from contributions to the integral near the

origin. This would not invalidate the method: The central value in the continuum limit is

finite even if the variance is unbounded. It could, however, require an impractically large

computational effort to achieve a desired accuracy as we make the lattice spacing smaller.

We return to this question after presenting our results.

There are a variety of lattice methods for obtaining the topological charge. The traditional

“algebraic” method uses a lattice discretization of the density FF̃ , constructed at each lattice

site from appropriate closed loops of gauge links. To suppress ultraviolet noise at the cutoff

scale, smoothing is required [14]. The Boulder discretization [15, 16], which we use in the

present study, is a refinement of the traditional definition. It is fattened (smoothed) by first

performing some number (we use three) of HYP smoothing sweeps [17] on the gauge field

and then constructing the operator from the smoothed links.

A more elegant method defines the topological charge density in terms of a chiral (e.g.

overlap) Dirac operatorD, as ρ(x) ∝ Tr[γ5D]x,x [18, 19] (the trace is over color and spin), but

using it directly in Eq. (6) is computationally expensive [20, 21]. For the overlap operator

a more tractable method uses the Atiyah-Singer index theorem to relate the topological

charge ν to the net number of zero crossings of the low-lying eigenvalues of a Hermitian

Dirac kernel from which the chiral operator is built [22]. This method was implemented in

[23]. For the overlap operator, smoothing is inherent in the choice of the Dirac kernel from

which the overlap action is built.

Another promising method works with gauge configurations of fixed topology [24, 25].

In this case, at large distance the correlator of the topological charge density approaches

a constant χt/V plus other known constants that depend on the fixed topological charge.

One can also use a hadronic flavor-singlet interpolating operator with JPC = 0−+ as a

proxy for FF̃ . This method has been tested at one lattice spacing in the two-flavor case on

configurations generated with the overlap action [26].

The Lüscher definition [13], based on a chiral Dirac operator, replaces the integral of

FF̃ with the integral of a quark pseudoscalar density. The quark field from which that
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density is constructed can have arbitrary mass, which sets the localization scale of the

operator. The expectation value of that density is regulated with a suitable number of

zero-momentum scalar-density insertions on the quark line. At large mass in the hopping

parameter expansion, the operator can be expressed as a sum of gauge-link loops analogous

to those in the Boulder discretization, which regulates the construction of FF̃ through an

extended discretization and HYP-smeared gauge-links. In the Boulder case the localization

of the gauge paths is controlled by the number of smearing steps, whereas localization of

the Lüscher operator is controlled by the quark mass. Of course, the chiral properties of the

underlying action in that case allows an arbitrary choice of scale.

Whatever the definition, the resulting susceptibility is subject in general to multiplicative

and additive corrections at nonzero lattice spacing [27]:

χ̂t(a,mq) = M(a,mq)
2 χt(mq) + A(a,mq). (7)

An additive renormalization is not required for chiral actions that use the same operator

in the fermion determinant and the measurement of the topological charge [28]. In our

case an additive renormalization is expected. We assume that in the continuum limit M

approaches one and A approaches zero. Since with our actions lattice artifacts appear at

O(a2) (up to logarithms), we expect that the approach to these limits is as a2 [6]. With the

overlap method one can use the same Dirac operator for the Monte Carlo evolution and the

measurement of topological charge. In this case the small instantons and dislocations that

are not seen by the overlap operator, so not suppressed by a small quark mass, are then also

not seen by the topological charge operator. In our case the Monte Carlo Dirac operator

and topological charge operators are unrelated, so we might expect larger lattice artifacts.

B. Predictions from chiral perturbation theory

Our computed topological susceptibility is a function of the quark masses and the lattice

spacing. As we have already recalled in Sec. I, in chiral perturbation theory the susceptibility

χt depends on the number of light quarks and their masses in leading order through

Σ/χt = 1/mu + 1/md + 1/ms + . . . . (8)

where Σ is the chiral condensate to this order, mu, md, and ms are the masses of the up,

down, and strange quarks, and the ellipsis represents contributions beyond the cutoff from
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higher quark masses and the axial anomaly [1]. We see that as quark masses vanish, the

susceptibility must vanish. The rate at which it vanishes depends on the number of light

flavors.

For equal up and down quark masses we may use the Gell-Mann-Oakes-Renner relation,

also from leading order chiral perturbation theory, to rewrite this expression as

f 2
π/(4χt) = 2/m2

π + 1/m2
ss + . . . , (9)

where m2
ss = 2m2

K −m2
π is the squared mass of the fictitious pseudoscalar meson containing

two nonannihilating quarks with masses equal to the strange quark, and in our normalization

the pion decay constant fπ is approximately 130 MeV.

With nonchiral lattice fermions, at nonzero lattice spacing one should instead use a version

of chiral perturbation theory appropriate to the lattice fermion formulation. In this way some

of the lattice discretization errors can be modeled. For staggered fermions using the fourth-

root procedure, we use rooted staggered chiral perturbation theory (rSχPT) [29]. This theory

has a taste multiplet of sixteen pions. Among them, only the taste singlet pion is sensitive

to the anomaly and so enters the expression for the topological susceptibility at leading

order. At tree level the continuum expression is modified by replacing the pseudoscalar

meson masses by their taste-singlet counterparts [30]:

1/χt = (4/f 2
π)(2/m

2
π,I + 1/m2

ss,I + 3/m2
0), (10)

where the subscript I identifies the taste singlet, and through the term in m0, which is

proportional to the η′ mass at lowest order, we have introduced an explicit anomaly contri-

bution. The standard chiral perturbation theory expression corresponds to m0 → ∞ (and

a → 0); introducing m0 in Eq. (10) is phenomenological because m0 is beyond the physi-

cal cutoff scale of chiral perturbation theory. At infinite quark mass we get the quenched

topological susceptibility χtq, which suggests an alternative phenomenological form [31],

1/χt = (4/f 2
π)(2/m

2
π,I + 1/m2

ss,I) + 1/χtq . (11)

C. Topological charge density operator

As before [6], we use the topological charge operator of DeGrand, Hasenfratz, and Kovacs

[15] optimized for SU(3) by Hasenfratz and Nieter [16]. The operator is constructed from
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closed ten-link paths of gauge matrices as follows:

ρ(x) =
2∑

j=1

c1jTr(1− Uj) + c2j [Tr(1− Uj)]
2 . (12)

Specifically, the operator U1 is constructed from a product along a path from site x in the se-

quence of directions (x, y, z,−y,−x, t, x,−t,−x,−z), summed over rotations and reflections,

and the operator U2, from the directions (x, y, z,−x, t,−z, x,−t,−x,−y). Both paths lie in-

side a 24 hypercube. The coefficients are c11 = 0.07872507, c12 = 0.3173630, c21 = −0.1888383,

and c22 = 0.2854577. Hasenfratz et al. devised this operator to optimize a match with a

geometric definition of topological charge on a “typical” set of gauge configurations. The

operator also reproduces accurately the charge of an instanton, provided the instanton ra-

dius is larger than the lattice spacing. The finer details of the construction of this operator

are unimportant for our purposes, since in the end we take the continuum limit.

We applied this operator to gauge configurations smoothed by three HYP steps [17].

From the point of view of the unsmoothed gauge field, this operation, in effect, enlarges the

footprint of the topological charge density operator by a small amount. We have shown in

[6] that the topological susceptibility on a coarse lattice (a ≈ 0.12 fm) is constant within

statistical errors of 8% for one to four HYP sweeps.

D. Variance reduction method

We calculate the topological susceptibility by integrating the topological charge density

correlator in Eq. (6) over the lattice four-volume. In the left panel of Fig. 1 we show a

typical correlator C(r). It is expressed in units of the Sommer parameter r0 ≈ 0.454 fm

[32]. As expected, it has a positive peak at the origin next to a negative minimum, and

it rises to its asymptotic limit of zero from below as required by CP symmetry. To give a

better visual impression of contributions to the susceptibility, in the right panel of Fig. 1 we

multiply C(r) by the statistical weight factor w(r) that counts the number of lattice points

that, by symmetry, have the same four-radius r, or, where the plotted value is binned,

have the same range of four-radii. This is essentially a discretized version of r3C(r)dr. The

irregular binning inherent in the discretized distance r produces the ragged appearance of the

weighted values at small r. On the other hand, statistical fluctuations produce the ragged

appearance at large r. The topological susceptibility in r0 units is simply proportional to

9



FIG. 1. Left: Topological charge density correlation function C(r) vs. separation in units of r0.

Right: Correlation function weighted by the volume measure. Errors are statistical and have not

been corrected for autocorrelations. The red symbols (crosses) indicate the fitted points. The black

curve shows the fit, which we use to replace the measured points for r > rc, the cut radius. (The

lone symbol at the right bins all measurements for r/r0 > 10.7).

the sum of the weighted values.

In Fig. 1, right, the substantial cancellation of positive and negative contributions at small

r is more evident. We also see that the large distance contribution to the susceptibility is

mostly noise. We have found that it is responsible for the bulk of the variance in the integral.

This is to be expected. In a suitably large subvolume V0 of spacetime, we should be able

to determine the topological susceptibility reasonably well by measuring fluctuations of the

local topological charge ν0. Consider putting together N such volumes to create the total

volume V . The overall topological charge ν is then obtained as a random walk of local

charges, so its variance grows with N . We can measure the susceptibility in two ways: (1)

average the locally determined 〈ν2
0〉/V0 over the N subvolumes or (2) calculate 〈ν2〉/V over

the full volume. With the former method the error in the measured susceptibility decreases

as 1/
√
N with increasing N and fixed V0, whereas with the latter method the error never

improves.

In our case the integral of the correlator C(r) replaces the sum over subvolumes. But

we still need to eliminate noise from contributions at large r. To do so, several years ago
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we introduced a variance-reduction method that fits the large r part of the correlator to

its asymptotic form in Eq. (15) and then, for r > rc for a suitable cutoff rc, replaces the

numerical sum of the correlator with an integral over the fitted function as follows [7]:

χt =
∫

r<rc
C(r) +

∫

r>rc
Cfit(r) , (13)

where rc is chosen inside the fit range. In the present study we chose rc ≈ 1.2 fm for all

ensembles. In Fig. 1, right, we illustrate the fit to the large r part of the correlator and

indicate rc. We continue to use this method in the present work.

E. Asymptotic fit model

The topological charge density is a flavor-singlet operator with quantum numbers JPC =

0−+, so the asymptotic behavior of the correlator is governed by the η and η′ mesons and,

for sufficiently light sea quarks, by multipion states. That is

C(r) = 〈ρ(x)ρ(0)〉 → AηS(mη, r) + Aη′S(mη′ , r) + . . . , (14)

where the A’s are overlap constants and S(m, r) is a scalar propagator with asymptotic form

S(m, r) ≈ [1 + 3/(8mr)] exp(−mr)/r3/2. (15)

The three-pion continuum is the lightest multimeson state in this correlator. For our en-

sembles the η meson is always lighter. Furthermore, the coupling of the topological charge

density operator to multimeson states is Zweig-rule suppressed. Therefore, we ignore them

in the present analysis. Since the topological charge density operator is an SU(3) flavor

singlet, it couples to the flavor singlet component of the η and η′ mesons. In the usual

representation of singlet-octet mixing [33],

|η〉 = cos θ |η8〉+ sin θ |η0〉

|η′〉 = − sin θ |η8〉+ cos θ |η0〉 , (16)

so

Aη/Aη′ = tan2 θ. (17)

Our statistics are insufficient for determining all the parameters of the fit function reliably.

Instead, we model the masses of the η and η′ and the ratio Aη/Aη′ , leaving only one fitting
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parameter Aη′ , which simply sets the normalization of the asymptotic form. We set m2
η =

2m2
s̄s/3 +m2

π/3 for our measured lattice values of ms̄s and mπ, and we fix mη′ = 958 MeV

(its physical value) since we have not calculated it for these ensembles. Finally, we use a

simple chiral model to fix the ratio of couplings Aη/Aη′ or equivalently, the singlet-octet

mixing angle as a function of quark masses.

Our model is based on the mass matrix for the flavor-neutral taste-singlet mesons in

lowest order SU(3) chiral perturbation theory [29]

M =




M2
UI +m2

0 m2
0 m2

0

m2
0 M2

UI +m2
0 m2

0

m2
0 m2

0 M2
SI +m2

0



, (18)

where MUI and MSI are masses of unmixed ūu (d̄d) and s̄s meson states, and m2
0 parame-

terizes the anomaly. The isosinglet eigenvectors are

|η〉 = vu |ūu〉+ vd
∣∣∣d̄d

〉
+ vs |s̄s〉

|η′〉 = v′u |ūu〉+ v′d
∣∣∣d̄d

〉
+ v′s |s̄s〉 , (19)

where

vu = vd = 1/N

vs = −(M2
UI −M2

SI +m2
0 +

√
d)/(2m2

0N)

v′u = v′d = 1/N ′ (20)

v′s = −(M2
UI −M2

SI +m2
0 −

√
d)/(2m2

0N
′)

d = (M2
SI −M2

UI)
2 − 2(M2

SI −M2
UI)m

2
0 + 9m4

0,

and N and N ′ normalize the eigenvectors to 1. Since the flavor singlet state in this basis is

just (1, 1, 1)/
√
3, we obtain the ratio

Aη/Aη′ = tan2 θ = (vu + vd + vs)
2/(v′u + v′d + v′s)

2, (21)

which we apply to the fit model of Eq. (14). To complete the model, we need the value

of the anomaly parameter m2
0. We set it so that for physical values of M2

UI and M2
SI (i.e.,

values that give the physical masses mπ and ms̄s =
√
2m2

K −m2
π), we get the standard

phenomenological mixing angle θ ≈ −20 degrees [33]. At this “physical” point the mixing

model also gives us mη = 493 MeV and mη′ = 953 MeV, reasonably close to their physical
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values. Then for unphysical masses we use the lattice values of M2
UI and M2

SI on each

ensemble, always keeping m0 fixed. This procedure assures that the η decouples as required

in the SU(3) flavor limit mu = md = ms, and it provides a smooth interpolation between

that limit and the physical limit. The taste-singlet masses M2
UI and M2

SI are obtained by

adding measured or estimated taste splittings to the masses of the lightest members of the

taste multiplet. Splittings are listed in Table V below.

The model is applied to all the dynamical ensembles in this study, listed in the Appendix

A. The resulting fit parameters are listed in Table I. The mixing parameter Aη/Aη′ is shown

to three digits. Apart from systematic errors in the model itself, in principle it inherits a

statistical error from our determination of the taste-singlet masses, which, in turn depends

on the error in the taste splitting. The last error, however, is less than 5%, small enough to

have no effect on the mixing parameter to the number of digits reported. The remaining fit

parameters do not depend on the taste-singlet masses. Consequently, statistical errors in the

determination of the taste-singlet masses have negligible effect on results for the topological

susceptibility.

F. Asymptotic fit model for the quenched ensembles

For the three quenched ensembles we use the same methodology, except that the fit model

has only one mass. We fix it to the mass of the JPC = 0−+ ground state lattice glueball

from Chen et al. [34], namely 2560 MeV. The parameters are listed in Table II. We chose

rc for the quenched ensembles to match our choice for the dynamical ensembles at the same

lattice spacing. Since the quenched correlators die so quickly at large r, the contribution

to the susceptibility for r > rc is negligible, and the asymptotic model has no effect on the

result.

III. RESULTS

We smooth the lattices with three HYP smoothing steps [17] and measure the topological

charge density with the Boulder operator at each space-time point. We then construct the

point-to-point correlator C(r) for every pair of points in the space-time volume. For r/a < 5

we keep values for every displacement, and for larger r we bin data over small intervals in
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10/g2 mud/ms Aη/Aη′ amη amη′ χ2
raw χ2/df

coarse

6.85 0.05/0.05 0.000 0.485 0.573 6.6 3.9/11

6.83 0.04/0.05 0.010 0.470 0.578 7.6 4.5/11

6.79 0.02/0.05 0.095 0.439 0.583 17.0 10.0/11

6.76 0.01/0.05 0.166 0.424 0.588 8.8 5.2/11

6.76 0.007/0.05 0.194 0.417 0.584 11.1 6.5/11

6.76 0.005/0.05 0.215 0.413 0.582 11.8 6.9/11

fine

7.18 0.031/0.031 0.000 0.320 0.403 40.5 11.2/19

7.11 0.0124/0.031 0.072 0.292 0.415 43.6 12.1/19

7.09 0.0062/0.031 0.128 0.280 0.416 24.3 6.8/19

7.085 0.00465/0.031 0.144 0.277 0.416 33.7 9.3/19

7.08 0.0031/0.031 0.162 0.274 0.417 17.9 5.0/19

7.075 0.00155/0.031 0.181 0.271 0.416 26.3 7.3/19

superfine

7.48 0.0072/0.018 0.049 0.186 0.291 52.4 16.4/29

7.475 0.0054/0.018 0.066 0.182 0.291 29.8 9.3/27

7.47 0.0036/0.018 0.087 0.178 0.291 30.4 9.5/27

7.465 0.0025/0.018 0.101 0.175 0.291 26.5 8.2/26

7.46 0.0018/0.018 0.110 0.174 0.292 35.2 11.0/26

ultrafine

7.81 0.0028/0.014 0.097 0.136 0.216 29.1 14.6/30

TABLE I. Parameters used in asymptotic fits to the (2 + 1)-flavor topological charge density

correlator. The raw χ2 is uncorrected for autocorrelations. The last column includes the correction

as explained in Sec. IIIA.

r. The resulting data is then fit to Eq. (14) over a range [rmin, rmax]. We replace the raw

data with the fit model for r > rc. The fit range is chosen to give an acceptable χ2/df

(corrected for autocorrelations) and to vary smoothly as a function of sea quark mass and

lattice spacing.
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10/g2 amG χ2/df

8.00 1.55 16.0/12

8.40 1.11 9.8/11

8.80 0.816 10.0/13

TABLE II. Parameters used in asymptotic fits to the quenched topological charge density correlator

and resulting values of χ2/df .

A. Monte Carlo time histories and autocorrelations

To determine the confidence level of our fits and errors in the fit parameters, we must

first analyze autocorrelations in Monte Carlo time. With our action and molecular dynamics

algorithm, the total topological charge is moderately persistent in Monte Carlo time. In

Fig. 2, we show the time histories for a range of lattice spacings for mud = 0.2ms ensembles.

As we have noted, however, the topological susceptibility is a local observable. We can get

a graphical sense of the autocorrelation affecting the susceptibility by considering the time

history of the integral of the correlator

χt(r) =
∫ r

0
C(r′) 2π2(r′)3dr′. (22)

In Fig. 3 we show the time history of this variable for the case r = 2r0 for the same set

of ensembles. Clearly the fluctuations in this quantity decorrelate much more rapidly than

those of the total topological charge.

We estimate the autocorrelation correction, i.e., the amount by which the naive (uncor-

related) variance should be increased to compensate for autocorrelations. For this purpose

we consider the integral of the correlator over the proposed fit range

∫ rmax

rmin

C(r′)2π2(r′)3dr′. (23)

We block the data in Monte Carlo time and calculate the variance of the mean as a function of

block size, extrapolating to infinite block size. The ratio of the extrapolated variance to the

naive variance is the correction factor. We also sum the autocorrelation coefficients to obtain

another estimate of the correction factor. These determinations fluctuate as a function

of sea quark mass. We averaged them at fixed lattice spacing to obtain the correction

factors shown in Table III. We should emphasize that the determination of autocorrelation
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FIG. 2. Total topological charge after three HYP sweeps as a function of simulation time for four

lattice spacings and fixed sea quark masses with ratio mud/ms = 0.2. Sections marked “a” and

“b” come from different Markov chains. From top to bottom, a = 0.12, 0.09, 0.06, and 0.045 fm.

corrections is notoriously difficult. To develop more confidence in these estimates, we should

have considerably longer time histories.

Our fits to the data take into account correlations in r as well. For all ensembles, mea-

surements are taken every six or sometimes every five molecular dynamics time units. We

do not bin data in Monte Carlo time before constructing the covariance matrix in r and

minimizing the correlated χ2 [35]. Uncorrected errors are derived from a jackknife analysis.

Thus the resulting χ2, based on the naive covariance, must be reduced by the factor in

Table III before estimating the confidence level. Furthermore, the naive single-elimination

jackknife errors in the fit parameters must be increased by the square root of this factor.
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FIG. 3. Contribution to the topological susceptibility for r < 2r0 as a function of simulation time

for the ensembles of Fig. 2.

We use the same factor to adjust the error in the contribution from the raw data for r < rc.

B. Topological charge density correlator

We expect the topological susceptibility to decrease with decreasing light sea quark mass.

It is interesting to see how the topological charge density correlator itself varies with the

light sea quark mass at fixed lattice spacing. In Fig. 4 we examine this dependence for a

series of fine lattice ensembles (a ≈ 0.09 fm) for which we have results for four ratios of the

light to strange quark mass, 0.05, 0.1, 0.15, and 0.2, corresponding to the range 0.601 to

1.074 in m2
πIr

2
0. In the upper panel any variation with light quark mass is evidently much

smaller than the plot symbol size. In fact the short distance part of the correlator shows
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spacing correction

coarse 1.7

fine 3.6

superfine 3.2

ultrafine 2.0

TABLE III. Autocorrelation correction factors for the various categories of lattice spacings in this

study. The factor multiplies the naive variance.

very little sea quark mass dependence. In the lower panel we enlarge the region around the

minimum where a small variation is now apparent. In this region light meson states begin

to dominate the correlator of the gluonic operators. As the light quark mass decreases, the

minimum drops, thus giving a larger negative contribution to the integral. This effect leads

to the suppression of the susceptibility. According to the model, the correlator should also

decay more slowly at large r, but this effect is too subtle to be visible with our statistics.

We next examine the lattice spacing dependence of the correlator at fixed light quark

mass ratio. Comparing the local correlators C(r) obtained on ensembles at different lattice

spacing is complicated because sampling is naturally done on a lattice scale. Rather than

rebinning the data to a common physical scale, we compute the partial integral χt(r) of

Eq. (22) and plot it in physical (r0) units in Fig. 5. As r increases from the origin, we see

a peak at short distance coming from the regulated contact term followed by a decrease

coming from the negative correlator. The onset and width of the peak is determined by

the effective radius of the topological charge density operator, which is fixed in lattice units.

Thus as the lattice spacing decreases, the expected negative 1/r8 singularity in the correlator

is exposed, and the peak increases in height and decreases in width.

At large r the data approach the asymptotic value of the full susceptibility. The figure

shows both the integrated raw data and the integral with the fit values for r > rc replacing

the raw data. The lower panel enlarges the asymptotic region to show the variance reduction

achieved by the fit. The result also shows a plausible convergence of the asymptotic value

in the continuum limit.

Now we point out a practical issue relevant to future extensions of this work, namely,

whether the topological susceptibility, defined by integrating the correlator of the regulated
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spacing a (fm) r0/a σcorr

coarse 0.12 3.82 1.8× 10−4

fine 0.09 5.40 2.5× 10−4

superfine 0.06 7.73 3.3× 10−4

ultrafine 0.045 10.39 4.4× 10−4

TABLE IV. Error σcorr in χt(r0), the short-distance contribution to the topological susceptibility,

at sea quark mass mud = 0.2ms for various lattice spacings. The error is adjusted to the same

sample size, autocorrelation, and lattice volume.

topological charge density operator, has a feasibly accessible continuum limit. This will

be the case if the variance in the integral of the correlator for fixed physical volume and

statistical sample size does not diverge as the lattice spacing decreases. We examine χt(r)

at a fixed physical distance r as the lattice spacing decreases. For r < r0/2 we find that

the variance actually decreases for a ∈ [0.045, 0.12] fm. But for such a small range in r,

the behavior of the integrated correlator is strongly influenced by the size of the topological

charge density operator. The larger radius r = r0 is safely outside the width of the operator

and in a region where, for a ∈ [0.045, 0.12] fm, the integrated correlator χt(r) is well past the

peak, as we can see from Fig. 5. We show the error in χt(r0) as a function of lattice spacing

in Table IV. This statistical error is adjusted for autocorrelations, sample size (factor of
√
N/N0), and lattice volume (factor of

√
V/V0) for N0 = 500 and V0 = 100 fm4. We see that

the adjusted error grows approximately as 1/a over this range. This trend suggests that it

will be increasingly expensive to push to smaller lattice spacing with our scheme. However,

the continuum limit is nonetheless finite, and our results demonstrate that the method gives

reasonable errors over the range of lattice spacings considered.

C. Topological susceptibility

Our results are summarized in Table VI and Fig. 6. Since chiral perturbation theory

predicts the behavior as a function of the mass of the taste-singlet pion, we also list estimates

of that mass. Unlike the Goldstone pion mass, the mass of the taste singlet is not measured

directly on all of our ensembles. However, to a good approximation, splittings of the squared

masses of the pion taste multiplet are known to be independent of the light quark mass at
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spacing a (fm) r20∆M2

coarse 0.12 1.136

fine 0.09 0.437

superfine 0.06 0.143

ultrafine 0.045 0.087

TABLE V. Mass splittings (difference in squared masses) between Goldstone and taste singlet

pions

fixed lattice spacing [36]. So if the splitting is measured for one light quark mass for a given

lattice spacing, the taste-singlet pion mass can be reconstructed from the Goldstone pion

mass for other light quark masses at the same spacing. Table V lists the splittings for the

categories of lattice spacings in this study. They were used to obtain the values in Table VI.

The largest error in the estimated splittings is less than 5%, which bounds the error in the

abscissa of the plot. We have chosen rc to lie within the fit range. We have found that

within this range our results vary by less than one standard deviation.

D. Continuum extrapolation

To model a continuum extrapolation, we fit our data to the following form:

1/χt = c0 + c1(a/r0)
2 + [c2 + c3(a/r0)

2 + c4(a/r0)
4]/(mπ,Ir0)

2 . (24)

This model assumes that lattice artifacts scale as a2. The fit yields χ2/df = 8.8/13. In

Fig. 6 the resulting fit curves are shown, and three representative points in the continuum

extrapolation are also plotted. Also plotted is the prediction of Eq. (11) using fπr0 =

130 × 0.454 MeV-fm with and without our continuum-extrapolated asymptotic quenched

topological susceptibility χtr
4
0 = 0.0523(29). From the fit itself we obtain fπ = 132(6) MeV,

which is better than expected for tree-level chiral perturbation theory.

IV. CONCLUSIONS

We have presented an extensive study of the topological susceptibility on 18 (2 + 1)-

flavor asqtad lattice ensembles and three quenched lattice ensembles. The susceptibility is
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10/g2 mud/ms range (a) rc/a r20m
2
πI (χt<)r

4
0 (χt>)r

4
0 χtr

4
0

coarse

6.85 0.05/0.05 [8.0, 12] 10 4.746 0.0461(14) −0.0006(2) 0.0455(14)

6.83 0.04/0.05 [8.0, 12] 10 3.997 0.0422(13) −0.0008(2) 0.0414(13)

6.79 0.02/0.05 [8.0, 12] 10 2.580 0.0364(10) −0.0009(1) 0.0355(10)

6.76 0.01/0.05 [8.0, 12] 10 1.872 0.0315(08) −0.0015(1) 0.0300(08)

6.76 0.007/0.05 [8.0, 12] 10 1.665 0.0309(09) −0.0015(1) 0.0294(09)

6.76 0.005/0.05 [8.0, 12] 10 1.517 0.0289(07) −0.0021(1) 0.0267(07)

8.00 quenched [6.0, 10] 10 − 0.0733(08) 0.0000(0) 0.0598(10)

fine

7.18 0.031/0.031 [10.0, 18] 13 3.626 0.0321(13) −0.0018(6) 0.0303(15)

7.11 0.0124/0.031 [10.0, 18] 13 1.688 0.0247(09) −0.0017(4) 0.0230(11)

7.09 0.0062/0.031 [10.0, 18] 13 1.074 0.0206(09) −0.0031(4) 0.0174(09)

7.085 0.00465/0.031 [10.0, 18] 13 0.918 0.0188(06) −0.0038(2) 0.0150(06)

7.08 0.0031/0.031 [11.0, 19] 13 0.760 0.0170(06) −0.0044(4) 0.0127(06)

7.075 0.00155/0.031 [12.0, 18] 13 0.601 0.0166(02) −0.0047(2) 0.0118(04)

8.40 quenched [8.0, 12] 10 − 0.0722(07) −0.0000(0) 0.0593(10)

superfine

7.48 0.0072/0.018 [12.0, 25] 20 1.177 0.0167(09) −0.0023(2) 0.0144(09)

7.475 0.0054/0.018 [12.5, 25] 20 0.920 0.0148(09) −0.0025(2) 0.0123(09)

7.47 0.0036/0.018 [12.5, 25] 20 0.666 0.0113(09) −0.0032(2) 0.0081(09)

7.465 0.0025/0.018 [13.0, 25] 20 0.510 0.0107(07) −0.0037(2) 0.0070(07)

7.46 0.0018/0.018 [13.0, 25] 20 0.408 0.0100(05) −0.0040(2) 0.0060(05)

8.80 quenched [15.0, 21] 15 − 0.0680(06) −0.0001(2) 0.0561(12)

ultrafine

7.81 0.0028/0.014 [16.0, 32] 27 0.634 0.0111(10) −0.0030(1) 0.0080(10)

TABLE VI. Fit ranges and cut radius in lattice units and results for the topological susceptibility.

Also shown are the computed or estimated taste-singlet squared pion masses in r0 units and the

contributions to the total topological susceptibility for distances less than (χt<) and greater (χt>)

than the cut radius.
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FIG. 4. Topological charge density correlator vs. r in units of r0 for a set of fine lattice ensembles

(a ≈ 0.09 fm) with varying light sea quark masses mud. Upper: overview. Lower: detail.
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FIG. 5. Upper panel: integrated topological density correlator χt(r)r
4
0 vs. r/r0 at fixed light

quark mass mud = 0.2ms for the lattice spacings indicated. Lower panel: detail of the asymptotic

behavior. The full topological susceptibility is the value at the largest r. The plotted points

give the result from the raw data without variance reduction. Errors include the adjustment for

autocorrelations listed in Table III. The solid black curves show the central value of the integrated

contribution with the fit values replacing the raw data for r > rc. (Values of rc and fit ranges are

given in Table VI.) The fit curves for a = 0.06 and 0.045 fm are, accidentally, nearly coincident.

Statistical errors on the solid lines are shown on the right edge of the right panel. They have also

been corrected for autocorrelations. The fit error for the smallest lattice spacing has the largest

error bar. The improvement in variance is evident.
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FIG. 6. Topological susceptibility vs. the squared taste-singlet pion mass in units of the Sommer

parameter r0 ≈ 0.454 fm [32]. The brown curve labeled “L.O. 2 + 1 +m0 shows the prediction of

tree-level continuum chiral perturbation theory from Eq. (11) with fπ = 130 MeV, and the dashed

brown line labeled “L.O. 2 + 1” shows the same prediction without the last term of Eq. (11). The

remaining curves are fits to the model of Eq. (24). The solid black line is the central value of the

continuum extrapolation of that model and three representative points on the curve indicate the

one sigma error.

defined as the integral of the correlator of the topological charge density. The topologi-

cal charge density is constructed from a discretized version of FF̃ with smearing to help

regulate ultraviolet fluctuations. To reduce the variance from large distances, we replace

the measured values of the correlator at large r by a fit model that builds in the expected

spectral contribution.

Our method for determining the topological susceptibility through an integral of the

topological charge density correlator avoids singularities at zero separation by smearing the

charge density operator over a fixed local set of lattice sites. A study of the variance in
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the small-distance contribution suggests that as the lattice spacing is decreased the variance

grows. At our level of statistics and for the range of lattice spacings we consider in this

study, this growth is manageable.

Over the range of lattice spacings and masses in this study, within statistical errors,

we find good agreement with tree-level staggered chiral perturbation theory and in the

continuum limit with tree-level continuum chiral perturbation theory, in both cases with

the expected number of flavors. This agreement supports the assertion that the fourth-root

procedure for staggered fermions results in the correct number of sea quark species in the

continuum limit.
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Appendix A: Ensembles studied

We use gauge field ensembles generated by the MILC collaboration [5, 36, 37] using 2+1

flavors of improved (asqtad) staggered sea quarks with various light quark masses. Relevant

parameters of the gauge field ensembles in this study are listed in Table VII. They fall

into four groups according to the approximate lattice spacing, namely coarse (0.12 fm), fine

(0.09 fm), superfine (0.06 fm), and ultrafine (0.045 fm). The table shows the inverse lattice

spacing in units of Sommer parameter r0. The pion and s̄s pseudoscalar meson masses are

shown in lattice units.
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10/g2 volume mud/ms amπ ams̄s r0/a Ncfg

coarse

6.85 203 × 64 0.05/0.05 0.48454(19) 0.48454(19) 3.921 364

6.83 203 × 64 0.04/0.05 0.43488(21) 0.48647(22) 3.889 340

6.79 203 × 64 0.02/0.05 0.31134(17) 0.49012(18) 3.860 469

6.76 203 × 64 0.01/0.05 0.22439(20) 0.49427(18) 3.822 644

6.76 203 × 64 0.007/0.05 0.18903(17) 0.49324(16) 3.847 435

6.76 243 × 64 0.005/0.05 0.15970(12) 0.49261(14) 3.865 317

8.00 203 × 64 quenched − − 3.881 400

fine

7.18 283 × 96 0.031/0.031 0.32003(18) 0.32003(18) 5.580 447

7.11 283 × 96 0.0124/0.031 0.20638(18) 0.32585(17) 5.420 509

7.09 283 × 96 0.0062/0.031 0.14777(12) 0.32698(8) 5.401 531

7.085 323 × 96 0.00465/0.031 0.12851(12) 0.3269(2) 5.399 1000

7.08 403 × 96 0.0031/0.031 0.10538(6) 0.32744(8) 5.394 489

7.075 643 × 96 0.00155/0.031 0.0750(2) 0.3275(1) 5.398 890

8.40 283 × 96 quenched − − 5.446 416

superfine

7.48 483 × 144 0.0072/0.018 0.13187(8) 0.20830(12) 7.722 601

7.475 483 × 144 0.0054/0.018 0.11420(9) 0.2075(1) 7.722 618

7.47 483 × 144 0.0036/0.018 0.09353(6) 0.20731(6) 7.732 611

7.465 563 × 144 0.0025/0.018 0.07843(8) 0.20764(8) 7.726 518

7.46 643 × 144 0.0018/0.018 0.06678(3) 0.20749(4) 7.710 799

8.80 483 × 144 quenched − − 7.388 405

ultrafine

7.81 643 × 192 0.0028/0.014 0.0712(1) 0.1583(1) 10.388 810

TABLE VII. Simulation parameters for the lattice ensembles used in this study, including measured

masses of the Goldstone pion and s̄s meson, inverse lattice spacing in r0 units, and number of

configurations from the ensemble. For taste singlet pions, see Table V.
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