

University of the Pacific Scholarly Commons

Euler Archive - All Works

Euler Archive

1751

Theoremata circa divisores numerorum in hac forma *paa*±*qbb* contentorum

Leonhard Euler

Follow this and additional works at: https://scholarlycommons.pacific.edu/euler-works Record Created:

2018-09-25

Recommended Citation

Euler, Leonhard, "Theoremata circa divisores numerorum in hac forma *paa*±*qbb* contentorum" (1751). *Euler Archive - All Works*. 164.

https://scholarlycommons.pacific.edu/euler-works/164

This Article is brought to you for free and open access by the Euler Archive at Scholarly Commons. It has been accepted for inclusion in Euler Archive - All Works by an authorized administrator of Scholarly Commons. For more information, please contact mgibney@pacific.edu.

or quam
ir. At fi

s M pars
pars naifionem,
ierus ne-

, ex qua

propolita

tum ea itenus in e tradiconcessa actu exreales, circuli

THEOREMATA

CIRCA DIVISORES NVMERORVM IN HAC FORMA paa + qbb CONTENTORVM.

In sequentibus theorematis litterae a et b designant numeros quoscunque integros, primos inter se, seu, qui praeter vnitatem nullum alium habeant divisorem communem.

Theorema r.

Inmerorum in hac forma aa + bb contentorum diuifores primi omnes funt vel 2 vel huius formae 4m
+ 1 numeri.

Theorema 2.

Omnes numeri primi huius formae 4m + r vicissim in hac numerorum formula aa + bb continentur.

Theorema 3.

Summa ergo duorum quadratorum seu numerus huius formae aa+bb diuidi nequit per villum numerum huius formae 4m-1.

Theorema 4.

Numerorum in hac forma aa + 2bb contentorum diuifores primi omnes funt vel 2, vel numeri in hac forma 8m + r vel in hac 8m + 3 contenti.

Theorema 5.

Omnes numeri primi in hac 8m-1 vel hac 8m-1 forma contenti vicissim sunt numeri huius formae aa+2bb.

Theo-

Theorema 6.

Nullus numerus huius formae aa+2bb dividi potest per vlium numerum huius 8m-1 vel huius 8m-3 formae.

Theorema 7.

Numerorum in hac forma aa + 3bb contentorum divifores primi omnes funt vel 2 vel 3, vel in vna harum formularum 12m+1, 12m+7 contenti.

Theorema 8.

Omnes numeri primi in alterutra harum formularum 12 m+1, vel 12 m+7 fiue in hac vna 6m+1 contenti fimul funt numeri huius formae aa+3bb.

Theorema 9.

Nullus numerus fiue huius 12m-1 fiue huius 12m-7 formulae, hoc est nullus numerus huius formae 6m-1 est diuisor vilius numeri in hac forma aa+3bb contenti.

Theorema 10.

Numerorum in hac forma aa + 5bb contentorum diuifores primi omnes funt vel 2, vel 5 vel in vna harum 4 formarum 20m + 1, 20m + 3, 20m + 7, 20m+ 9 contenti.

Theorema 11.

Si fuerint numeri 20m+1, 20m+3, 20m+9, 20m+7 primi, tum erit vt sequitur $20m+1 \equiv aa+5bb$; $2(20m+3) \equiv aa+5bb$

$$20m+1 = aa+50b$$
; $2(20m+3) = aa+50b$
 $20m+9 = aa+5bb$; $2(20m+7) = aa+5bb$

Theo-

THI

Nullus 20*m*vifor

Numei primi formuli

2{ 2{

28

funt cc

Si fuer 14*m* → 7 *l*

Nullus vllum

281

28 i

Numer Tom otest — 3

divitrum

con-

con-

diui-

iarum

20m

),20

5 b b

566

Theo-

Theorema 12.

Nullus numerus in vna sequentium formularum contentus 20m-1; 20m-3; 20m-9; 20m-7 potest esse divisor vilius numeri luuius formae aa+5bb.

Theorema 13.

Numerorum in hac forma aa + 7bb contentorum diuisores primi omnes sunt vel 2 vel 7 vel in vna sequentium sex formularum

funt contenti.

Theorema 14.

Si fuerint numeri in istis formulis 14m+1, 14m+9, 14m+1 contenti primi, tum simul in hac forma a a -1-7bb continentur.

Theorema 15.

Nullus numerus huius formae aa + 7bb potest diuidi per vilum numerum, qui in vna sequentium sex formularum

Theorema 16.

Numerorum in hac forma $a \ a + i i b b$ contentorum $Tom. \ XIV.$ V omnes

omnes diuisores primi sunt vel 2 vel 11 vel continentur in vna sequentium

10 formularum		feu 5} formularum∃
44 m I:	44 m + 3	22 M - I
	44m + 27	22 m + 3
44 11 -1 37	44 m 23	
44 m + 25:	44 m + 31	22m+5
44 m + 5	44 m + 15	22 m -+ 15;

Theorema 17.

Si fuerint numeri in his siue decem siue quinque formulis: contenti primi, tum simul erunt vel ipsi vel eorum quadrupli numeri huius sormae aa + 11bb.

Theorema 18.

Nullus numerus huius formae aa + 11bb potest diuidi per villum numerum, qui contineatur in vna sequentium

fine 10 formularum		fiue 5 formularum
44 11 - 73		22 m + 7
$^{\prime}44m + 13$;	44 111 -1- 35	22 m + 13
44 m 17,	44 111 39	22 m 17
44m + 19,	44 77 -1- 41	22 m + 19
44 m 21,	44.m - 43	22 m - 21

Theorema 19.

Numerorum in hac forma aa + 13bb contentorum omnes diuisores primi sunt vel 2 vel 13 vel continentur in vna sequentium 12 sormularum.

THE

75 £ 75 £

5 s 5 s

52 52

Omnes column:

aa —

tera for formae

Nullus per vil formula

.

Numer nes dit tium f

52m - I	.*	52m - 7
52m-1-49		52m - 31
52m + 9	,	52 m - II
52m25	3.7	52 m 19
52m-1-29		52m-1-47
52 m 17		52m-1-15

Theorema 20.

Omnes numeri primi, qui in priori formularum issarum columna continentur, simul sunt numeri huius sormae aa+13bb. Numerorum autem primorum, qui in altera formularum columna continentur, dupla sunt numeri formae aa+13bb.

Theorema 21.

Nullus numerus huius formae aa + 13bb diuidi potest per vllum numerum, qui contineatur in vna sequentium formularum

$$52m + 18$$
 $52m + 35$
 $52m + 37$
 $52m + 21$
 $52m + 41$
 $52m + 23$
 $52m + 43$
 $52m + 27$
 $52m + 45$
 $52m + 33$
 $52m + 51$

Theorema 22.

Numerorum in hac forma aa - 17bb contentorum omnes diuisores primi sunt vel 2 vel 17 vel in vna sequentium formularum continentur.

V 2

68 m

nulis :

qua-

li per

omnes n yna

52 118

68m I	68m - 3
68m + 9	68m + 27
68 m - 1- 13	68m - 1 - 39
68m + 49	68m - 11
68m-1-33	68m + 31
-68 m25	68m + 7
68m-1-21	68m + 63
68m-1-53	68m + 23

Theorema 23.

Omnes numeri primi, qui in priori harum formularum columna continentur ad, quos 2 referri debet, funt formae aa+17bb vel ipfi quidem vel eorum noncupla. Numerorum autem primorum in altera columna contentorum tripla funt numeri formae aa+17bb.

Theorema 24.

Nullus numerus huius formae aa-+17bb diuidi potest per vilum numerum, qui contineatur in aliqua sequentium formularum

68m- I	68m - 3
68m- 9	68 m-27
68m-13	68m - 39
68 m-49	68m-11
68 m - 33	68 m — 3 I
68m-25	68 m - 7
68 m - 2 I	68 m - 63
68m - 53	-68m - 23

THE

Nume nes di in vna

> 76 76 76

76 76 76

76 76 76

Omne tinenti ins fo

Nullu per v 9 for

Theo-

larum ormae Nutorum

potest

equen-

'heo-

THEOR. CIRCA DIVISORES NVMER. cet. 157

Theorema 25.

Numerorum in hac forma aa + 19bb contentorum omnes divisores primi sunt vel 2, vel 19, vel continentum in vna sequentium

18 form	ularum	vel harum g
76m + I	76m5	38m I
76 m 25	76m+49	38m - 5
76m 17	76m + 9	38m - 7
76m+45	76111-73	38m - 9
76m+61	76m-1-7	38 <i>m</i> - II
76m-1-35	76m-1-23	38m-1-17
76m + 39	76m + 43	38m-23
76m+63	76m+11	38m-1-25
76m-+55	7611-47	3811-1-35

Theorema 26.

Omnes numeri primi, qui in vna harum formularum continentur, sunt vel ipsi, vel saltem quater sumti numeri huis formae aa + 19bb.

Theorema 27.

Nullus numerus huius formae aa + 19bb diuidi potest per vllum numerum, qui contineatur in aliqua sequentium \mathbf{p} formularum

28.00

38m-17 38m-23 38m-25 38m-35

His igitur theorematis continetur indoles formularum a a - qbb, si q suerit numerus primus, ac primum quidem vidimus omnes divisores primos huiusmodi formularum esse vel 2 vel q, vel in talibus expressionibus 4 q m - a ita comprehendi posse, vt nullus dinisor in iis non contineatur, tum vero, vt omnis numerus primus $4qm + \alpha$ fimul sit divisor formulae cuiusdam a a -1-4bb. Deinde etiam hoc colligere licet; si numerus primus formae 4 qm $-+ \alpha$ fuerit divifor cuiusquam numeri aa -+ qbb, tum nullum numerum formae $4qm-\alpha$ divisorem esse posse eiusdem expressionis aa + qbb. Cum igitur inter formas divisorum formulae aa + qbb semper contineatur haec 4mq + 1 manifestum est, nullum numerum aa + qbbdiuidi posse per vllum numerum formae 4mq-1. Denique attendenti manifestum siet, si q suerit numerus primus formae 4n-1, tum divisorum formas ad numerum duplo minorem redigi posse, ita vi sad formulas 2 qm + a reuocari queant, quod fieri nequit, si q sit numerus primus formae 4n+1. Si igitur pro hac forma aa+ (4n+1)hb divisor sugart $4(4n+1)m+\alpha$, turn nullus numerus formae istius $4(4n+1)m+2(4n+1)+\alpha$ poterit esse diuisor eiusdem expressionis aa + (4n + 1)bb. Plures annotationes faciemus, cum etiam formulas aaqbb, quando q non est numerus primus, suerimus contemplati.

THEO

Numero bb con yel in

Omnes continer istam for pression

Nullus potest rum fc

Numei 5 bb c 5 vel

Theo-

Theorema 28.

Numerorum in hac forma aa + 6bb, vel hac 2aa + 3bb contentorum divisores primi omnes sunt vel 2 vel 3 vel in vna sequentium formularum continentur

$$24m + 1$$
 $24m + 7$ $24m + 11$

aa

jui-

ula-

qm

non

+ a

nde gm

tum

osse

mas

haec *qbb*

De-

pri-

rum

+α pri-

a +

nıllus

--- a

1)bb.

a -

con-

eo-

Theorema 29.

Omnes numeri primi formae vel 24m+1 vel 24m+7 continentur in expressione aa+6bb; at numeri primi islam formam 24m+5 et 24m+11 continentur in expressione 2aa+3bb.

Theorema 30.

Nullus numerus siue aa + 6bb siue 2aa + 3bb dividi potest per vllum numerum, qui contineatur in aliqua harum formularum

$$24m-1$$
 $24m-5$ $24m-11$

Theorema 31.

Numerorum in hac aa + 10bb vel hac forma 2aa + 5bb contentorum divisores primi omnes sunt vel 2 vel 5 vel in vna sequentium formularum continentur

$$40m + 1$$
 $40m + 7$
 $40m + 9$ $40m + 23$
 $40m + 11$ $40m + 37$
 $40m + 19$ $40m + 13$

Theo-

Theorema 32.

Numeri primi in priori harum formularum columna contenti fimul sunt numeri huius formae aa+10bb et numeri primi in altera columna contenti sunt numeri huius formae 2aa+5bb

Theorema 33.

Nullus numerus siue huius aa + 10bb, siue huius 2aa + 5bb formae diuidi potest per vllum numerum, qui in aliqua sequentium formularum contineatur.

40 m - I	40m- 7
$\frac{1}{4} \circ m - 9$	40 m - 23
40m-11	40m - 37
40m-19	40m-13

Theorema 34.

Numerorum in hac aa-1-14bb vel hac 2aa-1-7bb forma contentorum diuisores primi omnes sunt vel 2 vel 7 vel in vna sequentium formularum continentur

56 m + 1	56 m 3
56 m +· 9	56m-+27
56m+25	56m + 19
56 m + 15	56 112 5
56m + 23	56m+45
56m + 39	66 m - 13

Theorema. 35.

Numeri primi in priori harum formularum columna contenti simul sunt numeri vel huius $aa + x_4bb$ vel 2aa + 7

TH

tur 3 e

Si in . tum in vel for

Numei ma co vel 5:

> ୍ଦ ୍ର

77. Numei forma

3 vel

Tom

cont nuhuius

-1-5 n ali-

-7*bb* 2 vel

a conl 2*aa* --- 7 -1-766 formae, chi autem in altera columna continentur, corum tripla demuna in altera islarum formularum (comprehenduntur: 5001) 2000 inicia anticata

Theorema 36.

Si in diperiorita commutentur, in nullus numerus in istis formulis contentus and vel formae aa + 1466 vel 2 aa + 766.

Theorema 37.

Numerorum in hac a a - 15 bb vel hac 3 a a - 5 bb forma contentorum divisores primi omnes sunt vel 2, vel 3 vel 5 vel in vna sequentium formularum continentur

Theorema 38.

Numerorum in hac aa + 21bb, vel hac 3aa + 7bb forma contentorum divisores primi omnes sunt vel 2, vel 3 vel 7, vel in vna sequentium formularum continentur.

$$84m + 1$$
 $84m + 5$
 $84m + 41$
 $84m + 41$
 $84m + 41$
 $84m + 17$
 $84m + 17$
 $84m + 17$
 $84m + 17$
 $84m + 23$
 $84m + 19$, $84m + 71$

Tom. XIV

机工工事 1111 1111

~~

Theo-

Theorema 39.

Numerorum in hac $\ddot{a}a + 35b\dot{b}$ vel 5aa + 7bb forma contentorum diuisores primi omnes sunt vel 2, vel 5 vel 7, vel in vna sequentium formularum continentur.

	vel harum
140m -, -40m - 3	70m - I
140m + 3 $140m + 9$, $140m + 27$	70m 3
140m + 81, $140m + 103$	70m-1-9
140m + 29, 140m + 87	70m-1-11
140m + 121, $140m + 83$	70 <i>m</i> + 13
140m - 109, 140m - 47	70 m - 17
140 m + 11, 140 m + 33	70m-+27
140加十 99, 140加十 17	70m + 29
140m + 51, $140m + 13$	70m + 33
140m + 39, $140m + 117$	70m4-39
140m + 71, 140m + 73	70 m -+- 47
140m - 79, 140m - 97	70m + 51

Theorema 40.

Numerorum in aliqua harum formularum contentorum

3aa + 10bb; 5aa + 6bb diuisores primi omnes sunt vel 2, vel 3, vel 5, vel in vna sequentium formularum continentur.

120m 1;	120m-1-11
120m-1- 13;	12011-23
120m - 49;	120m + 59
120 1 37;	120m-+-47

Theorem mandas rum pa

Formula mul dir tio facil para — hoc est sufficiet quae rai

Inter in mula a binarius. a et b divisibili mula qui merus I visor foi perspicui

Reliqui istiusmos forma

I 5 vel

39

47 51 120m + 17; 120m + 67 120m + 101; 120m + 31 120m + 113; 120m + 43120m + 29; 120m + 79

Theoremata haec sufficient ad sequentes annotationes formandas, ex quibus natura divisorum huiusmodi sormulatum paa+qbb penitius perspicietur.

Annotatio 1...

Formula paa+qbb nullum habet divisorem, quin sit simul divisor sormulae aa+pqbb. Cuius quidem rei ratio sacile patet; nam qui numerus est divisor sormulae paa+qbb, idem divider hanc sormam ppaa+pqbb, hoc est hanc aa+pqbb, posito a loco pa. Hancobrem sufficiet istam vnicam sormam aa+Nbb considerasse, quippe quae ratione divisorum hanc paa+qbb in se complectiour.

Annotatio 2.

Inter numeros primos, qui vllum numerum in hac formula aa + Nbb contentum diuidunt, primem occurrit binarius. Si enim N sit numerus impar, sumendis pro a et b numeris imparibus, formula aa + Nbb siet per 2 diuisibilis; at si N sit numerus par, sumto a pari, formula quoque per 2 sit diuisibilis. Deinde vero ipse numerus N vel quaelibet eius pars aliquota poterit esse divisor formulae aa + Nbb, quod sumendo a = N est perspicuum.

Annotatio 3.

Reliqui dinifores primi omnes formulae aa + Nbb in issusmodi expressionibus 4Nm + a comprehendi possunt X 2

ita, vt etiam vicissim omnes numeri primi in formis istica $4Nm + \alpha$ contenti simul sint divisores formulae aa + Nbb. Praeterea si expressio $4Nm + \alpha$ praebeat divisores formulae aa + Nbb, tum nullus numerus huiusmodi $4Nm - \alpha$ poterit esse divisor vllius numeri in formula aa + Nbb contenti.

Annotatio 4.

Habebit autem a certos quosdam valores, qui ab indole numeri N pendebunt; ac semper quidem vnitas erit vnus ex valoribus ipsius a. Tum vero, quia de numeris primis in formula 4 Nm -1 a contentis quaestio est, perspicuum est neque vilum numerum parem, neque vilum numerum, qui cum N communem habeat divisorem, valorem ipsius a constituere posse.

min Annotatio 5. Comme confictation

Valores autem ipfius α omnes erunt minores quam 4N, fi enim qui essent maiores, per diminutionem numeri m minores, quam 4N, reddi possent. Hinc valores ipfius α erunt numeri impares minores, quam 4N, atque ad N primi. Neque vero omnes istiusmodi numeri impares ad N primi idoneos pro α valores exhibebunt, sed eorum semissis ab hoc officio excluditur, quoniam, si x sucrit valor ipsius α , tum -x seu 4N-x eius valor esse nequit; vicissimque si x non sucrit valor ipsius α , tum 4N-x erecto eius valor sit suturus.

Annotatio 6.

Numerus igitur valorum ipfius a, ita vt $4Nm + \alpha$ contineat omnes divisores primos formulae aa + Nbb, sequenti modo definietur. Sint p, q, r, s, cet. numeri primi

.. primi

primi confide

 $rac{1}{4i0}$

I.

N N

Quemac res ipfu et prin a. Po 4Ncc expression quod ex modo i a a -1 1 erunt re = a a mus, d

Intelligit

xx (qui

no pote

. []

cet:

ab initas erit
ris priris pripicuum
numealorem

... . d

4 N,
neri m
pfins a
ad N
nes ad
eorum
erit vanequit;
N-x

z con-, fenumeri primi primi inter se diuersi, excepto binario, qui seorsim est considerandus; atque

fi fuerit
$$N = 1$$
 $N = 1$
 $N = 2$
 $N = p$
 $N = pq$
 $N = pq$
 $N = pq$
 $N = pqr$
 $p = 1$
 $p =$

Annotatio 7.

Quemadinodum auteni vnitas semper reperitur inter valores ipsius a, ita etiam quiuis numerus quadratus impar et primus ad N locum habere debet in valoribus ipsius a. Posito enim b numero pari 2c, formula siet aa+1, 4Ncc, quae, si sit numerus primus, contineri debet in expressione 4Nm+a. Ergo a erit aa vel residuum, quod ex diussione ipsius aa per 4N remanet. Simili modo inter valores ipsius a reperiri debent omnes numeri aa+N, vel quae ex eorum per 4N diussione supererunt residua, posito enim b=2c+1 siet aa+Nbb=aa+N+4N(cc+c), qui, si sierit numerus primus, debebit aa+N esse valor ipsius a.

Annotatio 8.

Intelligitur etiam, si x sucrit valor ipsius α , tum quoque xx (quod quidem ex praecedente patet) et omnes omnimo potestates ipsius x, puta x^{μ} inter valores ipsius α lo-

cum habere debere. Deinde, si praeter x quoque y suerit valor ipsius α , tum quoque xy et generaliter x^{μ} y^{ν} dabit quoque valorem ipsius α . Scilicet si x^{μ} y^{ν} maius suerit quam 4N, per hoc dividatur et residuum erit valor ipsius α . Simili modo, si insuper z suerit valor ipsius α , tum etiam x^{μ} y^{ν} z^{ς} erit valor ipsius α . Hincque ex cognito vno vel aliquot valoribus ipsius α sacili negotio omnes omnino eius valores inueniuntur.

Annotatio 9.

Sit x quicunque numerus primus ad 4 N, eoque minor, atque vel +x vel -x valor erit ipfius a. Si igitur fuerit x numerus primus, ex fequenti tabula intelligetur, quibus cafibus +x, quibusque -x valorem ipfius a praebeat

Si	erit	Si p
$N \equiv {}^{3}n - 1$	$\alpha = \pm \frac{3}{3}$	prim
fi	· ·	affe C
$N = \int_{3n+1}^{3n+1}$	α + 5	ita i
$N = \begin{bmatrix} 5n + 4 \\ 5n + 2 \end{bmatrix}$		enoli
N — }+	α 5	prim
(711-)	`a,	quo
27n + 6	α = + γ	fu e
$N = \begin{cases} r^{n+1} \\ r^{n+1} \end{cases}$	α = - 7	N=
(n+		(4u
$\begin{cases} 1n+2 \\ 1n+6 \end{cases}$		n-1
117-8	α=+11	α =
[[117+10]	ا د ا	i — I
- \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	$\alpha - i$	6 N
1111-1-5	-	1.

Si propositus sit numerus quicunque primus, qui vtrum signo + an - affectus valorem ipsius α praebeat, ita innestigabitur. Bini casus debent enolui, alter, quo propositus numerus primus est formae 4u+1, alter quo est formae 4u-1. Priori casu erit $\alpha = + (4u+1)$ si fuerit N = (4u+1), si fuerit N = (4u+1), si fuerit N = (4u+1). n+tt. Posteriori casu autem erit $\alpha = + (4u-1)$ si sit N = (4u-1) si sit N =

Vio

fc

rε

ne

Si

vil

in

lici

Mbi notandum est, quemadmodum signum = aequalitatem designare. Quod si autem suerit pro vtroque casu N = (4u + 1)n + s, erit quoque N = (4u + 1)n + s, denotante ν numerum quemcunque integrum, vnde ista tabella pro quibusuis numeris primis sine negotio construitur.

Annotatio 10.

il**C**~

*y**

บบร

va-

fius.

que go-

or,

;itur

ur,

que

eat ,

bent

erus .

alte**r** ,

ca-

ierit

èrit

Vbi

Quoniam inter formas diuiforum primorum ipfius aa + Nbb habetur 4Nm+1, eadem expressio aa+Nbb per nullum numerum diuidi poterit, qui contineatur in hac forma 4Nm-1. Simili modo cum 4Nm+tt exhibeat formam diuiforum expressionis aa+Nbb, sequitur nullum numerum huiusmodi 4Nm-tt posse esse diuisorem vllius numeri in hac forma aa+Nbb contenti, si quidem quod semper pono a et b sint numeri inter se primi. Hanc ob rem impossibilis erit ista aequatio (4Nm-tt)u=aa+Nbb, ideoque erit 4Nmu-ttu-Nbb=aa, si quidem suerint 4Nmu-ttu et Nbb numeri inter se primi, quod cum certo eueniat, si b=1 et t=1, nanciscimur istud.

Consectarium.

Nullus numerus hac formula 4abc-b-c contentus vn-quam esse potest quadratus.

Annotatio 11.

Si fuerit N numerus huins formae 4n-1, tum formae diviforum ad numerum duplo minorem rediguntur, ita vt. in formulis huiusmodi $2Nm+\alpha$ comprehendantur. Scilicet si sirerit $4Nm+\alpha$ divisorum forma, tum quoque

41

ANM 12 N + a crit forma divisorum. Quare cum 2N m t t sit forma divisorum; sequitur mullum numerum 2 N m - tt sipisorem esse posse formae aa + Nbb. Hinc crit (2N m - tt) u = aa + Nbb; existente N = 4n - t, vude oritur hoc.

Nullus numerus huius formae e abc +b-c, si vel b vel c

Nullus numerus huius formae cabc-b-c, si vel b vel c sucrit numerus impar 4n-1, vuquam potest esse quadratus.

Annotatio 12.

Si fuerit N numerus impar huiusmodi 4n + 1 vel etiam numerus impariter par, tum diunforum formae ad numerum duplo minorem redigi non possunt. Scilicet si $4N + \alpha$ surit diunfor formae aa + Nbb tum $4Nm + 2N + \alpha$ eiusdem formae diunfor esse non poterit. Hinc 2(2m+1)N+tt non erit diunfor formae aa-Nbb, ideoque haec aequatio (2(2m+1)N+tt)u=aa+Nbb erit aequatio impossibilis, si quidem sint a et b numeri primi inter se: et N sit vel numetus impar sormae 4n + 1 vel numerus impariter par. Ex quo sequitur istud

Confectarium?

Nullus numerus huius formate 2abb-b-c, existente a numero impari, et b vel imparitér pari vel impari sormate an-c, vnquam esse potest quadratus.

Courses and , r - Scholion 7: To and M. And To

Quae hic sunt allata sufficienter declarant, indolem divisors um hususmodi formularum aa - Nbb, simulque inserviunt

THE

vient:
quibus
quae r
bb. (
fiue fir
etiam
vos tar
formula
fit diui
huiusma

Numero primi (numero torum. pares,

Numero diuifores Omneso nitis mo

Numero divifores ___ r. mul in modis c Tom. viunt ad omnes diulforum formas expedite inueniendas, quibus cognitis quoque eae numerorum formae innotescunt, quae nunquam prebere queant diulfores formulae aa+N bb. Cum igitu haec pateant ad omnes valores ipsius N, sine sint numerir primi, sine compositi; reliquum est, vt etiam casus euoluamus, quibus N denotet numeros negativos tam primos quam compositos; perspicuum autem est formulam paa-qbb nullum diulforem habere posse, quin sit diulfor huius aa-pqbb seu pqaa-bb, vnde sufficiet huiusmodi tantum formas aa-Nbb euoluisse.

Theorema 41.

Numerorum in hac forma aa-bb contentorum diuisores primi omnes sunt vel 2 vel $4m \pm r$, nullus scilicet datur numerus, qui non sit diuisor differentiae duorum quadratorum. Vicissim autem omnes numeri, praeter impariter pares, ipsi sunt differentiae duorum quadratorum.

Theorema 42.

Numerorum in hac forma aa-2bb contentorum omnes diuisores primi sunt vel 2 vel huius formae 8m + 1. Omnesque numeri primi huius formae 8m + 1 ipsi infinitis modis in formula aa-2bb continentur.

Theorema 43.

Numerorum in hac forma contentorum aa-3bb omnesdiuisores primi sunt vel 2 vel 3 vel huius formae 12m + 1. Atque vicissim omnes huiusmodi numeri primi simul in hac aa-3bb vel hac 3aa-bb forma infinitis modis continentur.

Tom. XIV.

źΝ

tum

linc

-±.,

3,70

rel t

itus.

tiam

ime:

2 N 2 (2

deo. N*b 6*

meri

for-

11 1

- chil

iuilo

infer-

PLUIN.

Y

Theore.

Theorema 44.

Omnes diuisores primi huius formae aa-5bb funt vel 2 vel 5 vel continentur.

in altera harum formularum vel in hac vna 20 m + 1, 20 m + 9 10 m + 1.

Omnesque numeri primi in his formis contenti fimul funt divisores formae aa-5bb.

Theorema 45.

Omnes divisores primi huius formae aa-7bb sunt vel 2 vel 7 vel in vna sequentium formularum continentur

 $28m \pm 1$; $28m \pm 3$; $28m \pm 9$ at que vicissim omnes numeri primi in his formis contenti simul sunt divisores formae aa-7bb.

Theorema 46.

Omnes diuisores primi huius formae aa-11bb sunt vel vel 11 vel in vna sequentium formarum continentur $44m \pm 1$; $44m \pm 5$; $44m \pm 7$; $44m \pm 9$; $44m \pm 19$ atque vicisim omnes numeri primi in his formulis contenti simul sunt diuisores formae aa-11bb, quae reciprocatio in oranibus sequentibus theorematis locum habet.

Theorema 47.

Omnes divisores primi formae aa-13bb sunt vel 2 vel 23 vel in sequentibus formulis continentur:

THE(

5

Omnes bb für tinentu

68;

68:

б8;

Omnes bb für tinentu

76;

76;

Omnes bb fun

241

Omnes

cet.

quae renocantur ad has $52m \pm 1$; $52m \pm 3$ quae renocantur ad has $26m \pm 1$ $26m \pm 3$ $26m \pm 3$ $26m \pm 3$ $26m \pm 9$

Theorema 48.

Omnes diuisores primi numerorum huius sormae aa-17 bb sunt vel 2 vel 17, vel in sequentibus: sormulis continentur: quae revocantur ad has

$$68m \pm 1;$$
 $68m \pm 9$ $34m \pm 1$
 $68m \pm 13;$ $68m \pm 19$ $34m \pm 9$
 $68m \pm 33;$ $68m \pm 25$ $34m \pm 13$
 $68m \pm 21;$ $68m \pm 15$ $34m \pm 15$

Theorema 49.

Omnes divisores primi numerorum huius formae aa-19 bb sunt vel 2 vel 19 vel in sequentibus formulis continentur

$$76m \pm 1$$
; $76m \pm 3$; $76m \pm 9$
 $76m \pm 27$; $76m \pm 5$; $76m \pm 15$
 $76m \pm 31$; $76m \pm 17$; $76m \pm 25$

Theorema 50.

Omnes diuisores primi numerorum formae huius aa-6 bb sunt vel 2 vel 3 vel in his formulis continentur:

$$24m \pm 1$$
; $24m \pm 5$; Theorems 51.

Omnes divisores primi numerorum formae aa-10bb sunt vel 2 vel 5 vel in his formulis continentur;

Y 2

4.

$$40m \pm 1; 40m \pm 3$$

 $40m \pm 9; 40m \pm 13$

Theorema 52.

Omnes divisores primi numerorum huius formae aa-14bb sunt vel 2 vel 7 vel in his formulis continentur:

$$56m + 13; 56m + 5; 56m + 25$$

 $56m + 13; 56m + 9; 56m + 11$

Theorema 53.

Omnes divisores primi numerorum huius formae aa-22 bb sunt vel 2 vel 11 vel in his formulis continentur:

$$88m + 1;$$
 $88m + 3;$ $88m + 9;$ $88m + 27;$ $88m + 7;$ $88m + 21;$ $88m + 25;$ $88m + 13;$ $88m + 39;$ $88m + 29.$

Theorema 54.

Omnes divisores primi numerorum huius formae aa-15 bb sunt vel 2 vel 3 vel 5 vel in his formulis continentur: 60m + 1; 60m + 1; 60m + 17.

Theorema 55.

Omnes diuisores primi numerorum huius formae aa-21 bb sunt vel 2 vel 3 vel 7 vel in his formis continentur: [quae renocantur ad has

$$84m + 1;$$
 $84m + 5$ $42m + 1$
 $84m + 25;$ $84m + 41$ $42m + 5$
 $84m + 37;$ $34m + 17$ $42m + 17$

Theo-

Th

On bb nen

Om *bb* 1

Om *b b*

Om
bb
form

Theorema 56.

Omnes divisores primi numerorum huius formae aa-33bb funt vel 2 vel 3, vel 11 vel in his formulis continentur: | quae reuocantur ad has

· ·		
$132m \pm 1;$	13211 17	$66m \pm 1$
$132m \pm 25;$	$132 m \pm 29$	66m + 17
$132m \pm 35;$	132m + 65	-66m + 25
132m + 49;	132111 + 41	66m + 29
132m + 37;	132m + 31	66m + 31

Theorema 57.

Omnes diuisores primi numerorum huius formae aa - 35 bb sunt vel 2 vel 5 vel 7 vel in his formulis continentur:

$$140 m + 1$$
;
 $140 m + 9$;
 $140 m + 59$
 $140 m + 29$;
 $140 m + 19$;
 $140 m + 31$
 $140 m + 13$;
 $140 m + 23$;
 $140 m + 67$
 $140 m + 43$;
 $140 m + 33$;
 $140 m + 17$

Theorema 58.

tur:

nti-

has

Omnes diuisores primi numerorum huius formae aa-30 bb sunt vel 2 vel 3 vel 5 yel in his formulis continentur

```
120m \pm 1; 120m \pm 13; 120m \pm 49
120m \pm 37; 120m \pm 7; 120m \pm 29
120m \pm 17; 120m \pm 19;
```

Theorema 59.

Omnes divisores primi numerorum huius formae aa-105 bb sint vel 2 vel 3 vel 5 vel 7 vel continentur in his formulis

Υį

420

	en e	quae renocantur ad has
420m+ I.	; 420 <i>m</i> + 13	210 <i>m</i> <u>+</u> I
420m + 169;		21011 + 13
420 m + 23		210m + 23
420m + 107		210 m <u>+</u> 41
420m + 109		210 m + 53
420 m + 59		210 <i>m</i> + 59
42011-101	-	210m + 73
420m + 151		210 <i>m</i> + 79
	+100m + 103	210m + 89
420m + 79	,	$210m \pm 97$
	420 m + 113	210m + 101
420m + 209.		201 m + 103

Annotatio 13.

Numerorum ergo in formula aa-Nbb contentorum divisores primi omnes sunt vel 2, vel divisores numeri N vel in eiusmodi formulis 4Nm + a comprehenduntur. Quodis enim 4Nm+a suerit forma divisorum, tum quoque 4Nm-a erit divisorum forma: secus atque in formulis aa+Nbb, quarum si 4Nm+a suerit divisor tum 4Nm-a nullum vuquam praebere potest divisorem eiusdem formulae.

Annotatio 14.

Posita ergo $4 \text{ N}m \pm \alpha$ pro forma divisorum generali numerorum in hac expressione aa-Nbb contentorum, littera α plerumque plures significabit numeros; inter quos vnitas semper continetur, tum vero quia hic de divisoribus primis sermo est inter valores ipsius α nullus erit numerus

TH

mei nife fint dini (2 l mi omi 2 N relic neti

> Qu ruin quai gula rem

> mul quo

forr etia

Sicu

loru

tur ad b= ccqui

fun

merus par nec vllus dinifor numeri N. Deinde etiam manifeitum est, omnes valores ipsus α ita ordinari poste, vt siat minores quam 2N. Si enim sit 4Nm+2N+b dinifor, tum posito m-1 loco m, dinifor erit 4Nm-(2N-b). Erunt ergo valores ipsus α numeri impares primi ad N, minores quam 2N, horumque numerorum omnium imparium et primorum ad N et minorum, quam 2N, semissis tantum praebebit idoneos valores ipsus α , resiqui exhibebunt formulas, in quibus plane nullus continetur dinifor. Perpetuo scilicet totidem habebuntur formulae diniforum, quot sunt contrariae, solo excepto casu, quo N = 1.

Annotatio 15.

Qu d ad numerum valorum ipfius α pro formula diviforum $4Nm + \alpha$ attinet, quoniam ob fignum ambiguum quaenis formula est duplex, hic quoque eadem valebit regula, quam supra annot. 6. dedi. Sic in vitimo theoremate, quo erat N = 105 = 3, 5, 7, numerus valorum ipsius α erit = 2, 4, 6 = 48, seu cum quaenis formula sit gemina, numerus formularum sit 24, quot etiam exhibumus.

li∙

N

r-

 \mathbf{m}

นร-

)()-

lit-

.105

ri-

-ווון

rus

Annotatio 16.

Sicut autem vnitus perpetuo inter valores ipsius α reperitur, ita etiam quinis numerus quadratus, qui sit primus ad 4N, valorem idoueum pro α suppeditabit. Posto enim $b \equiv 2c$, formula aa - Nbb abit in aa - 4Ncc seu 4Ncc - aa, ex quo patet quemuis numerum quadratum aa, qui sit primus ad 4N, exhibere valorem idoueum pro a, sumendo scilicet residuo, quod in diussione ipsius aa per 4N

4 N remanet. Simili modo ponendo b = 2c + 1, formula Nbb-aa abit in 4N(cc+c)+N-aa, vnde etiam omnes numeri N-aa seu aa-N, qui quidem fint primi ad 4 N, idoneos valores pro a praebebunt. Deinde quoque notandum est, si sint x, y, z, valores ipfius α , turn quoque x^{μ} , y^{ν} , x^{ζ} itemque omnia producta. quae ex numeris x, y, z eorumue potestatibus quibuscum. que resultant, valores ipsius a esse exhibitura; vnde coguito vno vel aliquot valoribus ipfius a facili negotio omnes reperiuntur.

Annotatio 17.

Quo autem clarius appareat, cuiusmodi valores littera a perpetuo sit habitura, tabulam sequentem adiicere visum est, similem eius, quae annot. 9. habetur.

Erit scilicet	$ \int_{N} \frac{f_{1}}{\sum_{n=1}^{3n} + 1} $
α <u> </u>	$ \begin{vmatrix} N = 5n \\ -1 \\ N = 5n \\ -1 \end{vmatrix} $
α <u></u> 7 α <u></u> 7	
# <u></u>	
2 TI	$N = 11n \begin{cases} -\frac{1}{2} \\ -\frac{3}{2} \\ -\frac{4}{5} \end{cases}$

Ex pro posfu meri hend quadi per ; $pn \rightarrow$ lae c tem nullu terit

TH

Si fu nis a ciores 2 N % diuifo rum

lae, a T_{ℓ}

Annotatio 18.

Ex hac igitur tabula numeri primi, qui idoneos valores pro α praebeant, facile dignosci simulque inepti reiici possunt. Proposito scilicet numero primo p, omnes numeri quadrati in huiusmodi formulis $pn + \theta$: comprehendi possunt, quae prodeunt ponendo pro θ numeros quadratos, seu residua, quae ex divisione quadratorum per p remanent. Quare si N suerit huiusmodi numerus pn + tt, tum inter formas divisorum $4Nm + \alpha$ formulae aa - Nbb seu Nbb - aa, habebitur $\alpha = p$, sin autem numerus N non contineatur in forma pn + tt, tum nullus numerus in formula hac 4Nm + p contentus poterit esse divisor valius numeri huius formae aa - Nbb.

Annotatio 19.

Si fuerit N numerus impar formae 4n+1 tum expressionis aa-Nbb diuisorum formae $4Nm+\alpha$ ad duplo pauciores reduci possunt, ita vt exhiberi possunt hoc modo: $2Nm+\alpha$ Hoc scilicet casu, si $4Nm+\alpha$ suerit forma diuisorum, tum quoque $4Nm+(2N-\alpha)$ erit diuisorum forma, sic cum casu N=13, vna diuisorum formulae aa-13bb forma esset 52m+3, erit quoque 52m+23 forma diuisorum.

Tom. XIV.

 \boldsymbol{Z}

Annota-

Annotatio. 20.

Sin autem fuerit N vel numerus impariter par, vel numeru impar formae 4n-1 tum ista formarum diuidentium reductio ad duplo pauciores non succedit. Scilicet si hoc casu formulae aa-Nbb sherit $4Nm+\alpha$ diuisorum forma, tum $4Nm+(2N-\alpha)$ talis non erit, hoc est: nullus numerus in forma $2(2m+1)N+\alpha$ contentus erit diuisor vllius numeri huiusmodi aa-Nbb. Posito ergo a=tt, erit:

(2(2m + 1)N + tt)u = aa - Nbb.

Vnde consequimur sequens.

Consectarium.

Nullus numerus in hac forma 2abc + c - b contentus vnquam potest esse quadratus, si quidem suerit a numerus impar, et b numerus seu impariter par, seu impar huius sormae 4n-1.

Scholion 2.

Huiusmodi formulae magis speciales, quae nunquam quadrata fieri queant, innumerabiles superioribus deduci pos-Consideremus enim priorum formam aa + Nbb, fitque 4Nm + A einsmodi formula, vt nullus numerus in ea contentus possit esse divisor formae aa + Nbb. ergo aa + Nbb = (4Nm + A)u, denotante hoc figno = aequationem impossibilem, ex quo oritur aa = 4 NmSit b = Ac fiet aa = 4 Nmu + Au $u \rightarrow Au - Nbb$. NAAcc. Ponatur porro u = NAcc + d, eritque aa =4NNAmcc+4Nmd+Ad.Sit d=4NNn erit $Ga = 16 N^{s} mn + 4 NNAmcc + 4 NNAn.$ Dinidatur haec

THE

haec

que. a rit ef diuidi conter nullur

tineati

I:

20

20

20 20

24 24 24

24 28

28 28

28 28

28

Notaniet n ro

nuenicet ifo-

set.

hoc ren-'ofi-

ntus erus mius

quapofbb, us in Erit

igno N m u –

erit

haec

haec formula per quadratum 4NN ac ponatur c = 1 eritque. 4Nmn + Am + Am formula, quae nunquam poterit esse quadratum, si quidem forma aa + Nbb non possit dividi per vllum numerum in hac formula 4Nm + A contentum. Ex superioribus ergo theorematis colligimus nullum numerum, qui in vna sequentium expressionum contineatur, sieri posse quadratum.

```
4mn - 3(m - n)
           (m \rightarrow n)
 4mn-
                            8mn \rightarrow 7(m \rightarrow n)
           (m--n)
  8 772 72 --
                            8mn + 5(m+n)
         3(m + n)
 8mn-
                           \mathbf{I} \circ mn + \mathbf{I} \cdot \mathbf{I} \cdot (m + n)
12mn-
          (m-1-n)
         7(m+n)
                          12mn + 5(m+n)
I 2 mn -
                          20mn + 19(m + n)
          (m-1-n)
20m11-
                          20mn + 17(m + n)
20mn-3(m+n)
         7(m+n)
                          20mn + 13(m + n)
20mn-
                          20mn + II(m+n)
20mn - 9(m + n)
         (m+n);
                          24 m n + 23 (m + n)
2411111-
                          24mn + 19(m + n)
24mn-5(m-n);
                          24mn \rightarrow 17 (m \rightarrow n)
24mn - 7(m + n);
                          24mn+13(m+n)
24mn-11(m+n);
                          28 mn + 27 (m + n)
28 mn —
          (m \rightarrow n):
28mn - 9(m + n);
                          28 mn + 19 (m + n)
28 m n - 11 (m + n);
                          28 mn + 17 (m + n)
28mn-15(m+n);
                          28mn + 13(m + n)
28mn-23(m+n);
                          28mn + 5(m+n)
28 mn - 25 (m + n);
                          28mn \rightarrow 3(m \rightarrow n).
```

Notandum autem est in formulis alterius columnae numeros m et n respectu coefficientis ipsius m+n primos este oportere. Hanc restrictionem requirit ea conditio, quam initio stabiliui-

biliuimus, vt in forma aa + Nbb numeri a et b fint inter se numeri primi: nisi enim haec conditio observetur, quilibet numerus posset esse divisor istius formae. Ceterum hac conditione observata ex praecedentibus perspicuum est, si 4Nmn - A(m+n) quadratum esse nequeat, tum quoque hanc latius patentem 4Nmn - A(m+n) + 4Np(m+n) quadratum esse non posse.

Scholion 3.

Contemplemur iam expressionem aa - Nbb cuius nullus divisor contineatur in formula hac 4Nm + A. Erit ergo aa - Nbb = 4Nmu + Au seu aa = 4Nmu + NAA + Au. Ponatur NA + u = d, seu u = +d + NA, critque aa = +4Nmd + 4NNAm + Ad, sit d = +4NNn sietque $16N^2mn + 4NNAm + 4NNAm = aa$, vnde patet nullum numerum contentum in hac formula 4Nmn + A(m-n) quadratum esse posse. Neque ergo etiam vllus numerus in hac expressione 4Nmn + A(m-n) + 4Np(m-n) contentus quadratum esse poterit, si modo conditio ante memorata observetur, vt a et b sint numeri inter se primi. Hinc itaque ex theorematis posterioribus deducuntur sequentes formulae, quae nunquam numeros quadratos praebere possunt.

$$8mn \pm 3(m-n)$$
, $8mn \pm 5(m-n)$
 $12mn \pm 5(m-n)$; $12mn \pm 7(m-n)$
 $20mn \pm 3(m-n)$; $20mn \pm 17(m-n)$
 $20mn \pm 7(m-n)$; $20mn \pm 13(m-n)$
 $24mn \pm 7(m-n)$; $24mn \pm 17(m-n)$
 $24mn \pm 11(m-n)$; $24mn \pm 13(m-n)$

$$28 mn + 5 (m-n);$$
 $28 mn + 23 (m-n)$
 $28 mn + 11 (m-n);$ $28 mn + 17 (m-n)$
 $28 mn + 13 (m-n);$ $28 mn + 15 (m-n)$
Cet.

attendenti autem facile patebit ambos numeros m et n respectu coefficientis ipsius (m-n) primos esse debere: alioquin enim, si verbi gratia in formula 12mn + 5 (m-n) poneretur m = 5p et n = 5q, prodiret 12.25 pq + 25(p-q), neque adeo haec formula 12pq + (p-q) quadratum esse posset, quod tamen est falsum.

I An hac Ne-Nm effe

cet.

it in-

tur.

Ceteuum tum

-Np

ıullus

ergo L |-|- JA,

, vt heoquae

8 172

 Z_3

DE