3-12-2003

Characterization of a gene encoding two isoforms of a mitochondrial protein upregulated by cyclosporin A in activated T cells

Laurent Mascarell
Institut Pasteur

Rodolphe Auger
Université Paris-Sud

Andres Alcover
Institut Pasteur

David M. Ojcius
Université Paris, dojcius@pacific.edu

Thomas Jungas
Université Paris

See next page for additional authors

Follow this and additional works at: https://scholarlycommons.pacific.edu/dugoni-facarticles
Part of the Biochemistry Commons, Immunity Commons, Immunology of Infectious Disease Commons, and the Medical Immunology Commons

Recommended Citation
https://scholarlycommons.pacific.edu/dugoni-facarticles/76

This Article is brought to you for free and open access by the Arthur A. Dugoni School of Dentistry at Scholarly Commons. It has been accepted for inclusion in Dugoni School of Dentistry Faculty Articles by an authorized administrator of Scholarly Commons. For more information, please contact mgibney@pacific.edu.
Characterization of a Gene Encoding Two Isoforms of a Mitochondrial Protein Up-regulated by Cyclosporin A in Activated T Cells*

Laurent Mascarellet,a Rodolphe Auger,a, j, c, d, e Andres Alcover, e, c, f David M. Ojcius,b, f Thomas Jungas,a, b, d, e, j Véronique Cadet-Daniel,a Jean M. Kanellopoulos, a, d, e and Paolo Truffa-Bachi,a, b

From the aUnité de Biologie des Populations Lymphocytaires and fUnité de Biologie des Interactions Cellulaires URA CNRS 2582, Institut Pasteur, 75724 Paris cedex 15, France, bUniversité Paris 7, Institut Jacques Monod, UMR 7592 CNRS, 2 place Jussieu, 75721 Paris cedex 5, France, and eInstitut de Biochimie et Biophysique Moléculaire et Cellulaire, Université Paris XI, 91405 Orsay cedex, France

Cyclosporin A (CSA) is an immunosuppressant used in organ transplantation. A recent proteomic analysis has revealed that activation of T cells in the presence of CSA induces the synthesis of hundreds of new proteins. Here we used representational difference analysis to characterize some of the corresponding induced genes. After cDNA bank screening we focused on one of these genes, which we named CSA-conditional, T cell activation-dependent (CSTAD) gene. This gene produces two mRNAs resulting from alternative splicing events. They encode two proteins of 104 and 141 amino acids, CSTADp-S and CSTADp-L, for the short and long forms, respectively. FK506 had the same effect as CSA, whereas rapamycin did not affect the level of CSTAD gene expression, demonstrating that inhibition of the calcineurin activation pathway is involved in CSTAD gene up-regulation. CSA also led to overexpression of CSTAD in mice immunized in the presence of CSA, confirming the in vitro analysis. Microscopic and cytofluorimetric analysis of cells expressing green fluorescent protein-tagged CSTADp-L and CSTADp-S showed that both proteins colocalize with mitochondrial markers and depolarize the mitochondrial transmembrane potential without causing release of cytochrome c, apoptosis, or necrosis. Both CSTADp isoforms are sensitive to proteinase K, implying that they are located in the mitochondrial outer membrane. These data reveal a new mechanism of action for CSA, which involves up-regulation of a gene whose products are sorted to mitochondria and depolarize the mitochondrial membrane.

T cell activation and proliferation result in a large reshuffling of the gene transcription program; many genes become activated, whereas others are silenced (1). This process is highly coordinated to ensure the acquisition of optimal effector functions and cell survival (2). Genes encoding different proto-oncogenes are induced immediately, whereas genes encoding cell growth and differentiation factors are induced later; finally, genes involved in cell division are transcribed at even later times. T cell proliferation can be prevented by immunosuppressive drugs such as cyclosporin A (CSA), a molecule successfully used in clinics to prevent graft rejection. CSA interferes with T cell proliferation by blocking the transcription of a set of genes encoding growth and differentiation factors (for review, see Refs. 2 and 3). The transcription of these genes is regulated by a Ca2+-dependent pathway involving the dephosphorylation of the nuclear factor of activated T cells (NFAT) (4). Dephosphorylated NFAT migrates to the nucleus where in conjunction with AP-1 it activates IL-2 gene transcription (5). CSA binds to various members of the cyclophilin protein family and forms a complex with calcineurin, preventing its activation. Thus dephosphorylation of NFAT is prevented, IL-2 is not produced, and T cells do not proliferate (6, 7). However, other biochemical pathways such as the Ras/Raf pathway responsible for AP-1 formation are not affected by CSA (8, 9). Finally, the stability of AP-1, a factor expressed transiently during activation, is increased in T cells activated in the presence of CSA (10).

CSA therapy does not induce tolerance toward graft antigens, and discontinuation of therapy is associated with graft loss due to rejection. Thus, patients need to be treated with the immunosuppressors during their entire life span. Deleterious effects such as nephrotoxicity, hypertension, symptomatic hyperuricemia, and hyperlipidemia are associated with this treatment. More damaging, CSA-treated patients display an increased incidence of lympho-proliferative disorders and skin cancers, a common and dreaded complication (11, 12). Different reports suggest that therapy with immunosuppressors can specifically stimulate the transcription of genes that may contribute to the onset of complications arising from therapy. In particular,

Published, JBC Papers in Press, December 18, 2003, DOI 10.1074/jbc.M313770200

Received for publication, December 16, 2003

1 The abbreviations used are: CSA, cyclosporin A; CSTAD, CSA-conditional, T cell activation-dependent gene; NFAT, nuclear factor of activated T cells; RDA, representational differences analysis; EDG-1, sphingosine 1-phosphate receptor; GFP, green fluorescence protein; ConA, concanavalin A; IL, interleukin; RT, reverse transcription; VDAC, voltage-dependent anion channel.
ticular, CSA increases transcription of the transforming growth factor β gene, suggesting that CSA may induce tumors in part due to overexpression of this immunosuppressive cyto-
kine (13, 14). The finding that CSA up-regulates gene expression in cells from different tissues irrespective of their activa-
tion state suggests that calcineurin may be the ubiquitous target, which could then affect gene expression either nega-
tively or positively.

The effects of CSA on gene up-regulation were extended recently by a proteomic analysis of newly synthesized proteins in T cells activated in the absence or presence of CSA (15). Remarkably, more than 100 proteins that are not found in resting or activated T cells were induced when stimulation was carried out in the presence of CSA. To identify the correspond-
ing genes, we have now performed representational difference analyses (RDA) under the same conditions. Among the up-
regulated genes we have identified a gene that we have named CSTD, for CSA-dependent, T cell activation-dependent gene.

CSTD encodes two proteins of 104 and 141 amino acids that are localized in mitochondria. Although overexpression of the short isoform perturbs mitochondrial morphology and depolarizes the inner mitochondrial membrane, cytochrome c was not released, and cells did not undergo apoptosis nor necrosis. Finally, CSTD up-regulation is also observed in mice immu-
nized in the presence of CSA, suggesting that the phenomenon of CSA-induced gene up-regulation may be implicated in some of the deleterious effects of CSA treatment.

MATERIALS AND METHODS

Mice and Immunization—Five- to eight-week-old C57BL/6 female mice were obtained from IFFA-CREDO (L’Arbresle, France). Six- to eight-week-old female mice expressing a transgenic T cell receptor (Vβ5.1.2 and Vγ11Jα84) specific for the 88–104 peptide of pigeon cytochrome c-major histocompatibility complex II EL4 complex (16) were bred at the Centre de Distribution, Tipype & Archivage animal (Orlés, France).

Reagents—The synthetic peptide (Neosystem, Strasbourg, France) was dissolved in balanced salt solution (5 mg/ml) and kept at −80 °C. Tetramethylrhodamine ethyl ester and MitoTracker Orange (CMXRos) were obtained from Molecular Probes (Eugene, OR). The mouse monocy-

tonal anti-cytochrome c antibody (clone 7H8.2C12) was from Pharm-

ingen. The antibody against HSP-60 was a gift from Dr. S. Susin. Texas Red-coupled anti-mouse IgG1 antibody was from Southern Biotechnol-

ogy (Birmingham, AL). For cell culture experiments, CSA, kindly sup-
plied by Novartis France, was dissolved in absolute ethanol. FK506 was a gift from Fujisawa Healthcare Inc. (Deerfield, IL). Rapamycin and DABCO (1,4-diazabicyclo(2.2.2.)octane) were purchased from Sigma.

Rapamycin and FK506 were dissolved in balanced salt solution (5 mg/ml) and kept at −80 °C. CSA was dissolved in absolute ethanol, and cells did not undergo apoptosis nor necrosis. Finally, CSTD up-regulation is also observed in mice immu-
nized in the presence of CSA, suggesting that the phenomenon of CSA-induced gene up-regulation may be implicated in some of the deleterious effects of CSA treatment.

RT-PCR Analysis—Total RNA was isolated from various tissues, puri-
fied T cells were isolated by the acid guanidium method (19), and CSA was synthesized with Moloney murine leukemia virus reverse transcriptase (Invitrogen) according to the manufacturer’s protocol using random hexanucleotide primers. The PCR primers are: β-actin, 5′-CAC-

GATTCCCTCTCCAGC and 5′-GGCCACACCTCCTCACA (IL-2), 5′-TGT-

tgACCTATCACTCGA and 5′-AGAGATGGAGAATTACAG; synaptogat-

ine-2-like, 5′-GGGTCTTTTACGAAAGGC and 5′-CAACAAAAAGGG-

AAACAA; α-E-integrin, 5′-TCAAGTTCTGCAAGGACGA and 5′-AG-

tGGAGAATCGAGG; 5′-CTCCTGGCTG and 5′-CGGCCGATCTCCTTGTTG; CSTAD-D, 5′-ATGGCAGCTTGTGTCGA; CSTAD-C, 5′-TGGAGGAGCTTCAAGAGATG; CSTAD-S, 5′-GCCGGGAGAACTCGTGAAGAT.

PCR was performed for 30–40 cycles (95 °C, 30 s; 55 °C, 30 s; 72 °C, 30 s). After electrophoresis on a 1.5% agarose gel the PCR products were visualized using a Vilber Lourtemilluminator and the Biocapt program.

Real-time PCR to Monitor Gene Expression—The differentially ex-
pressed genes were analyzed by real-time PCR using the above-men-
tioned primers. Total RNA was isolated, and CDNA was synthesized as described above. Real-time PCR was conducted with a SYBR green kit (Biorad, Hercules, CA). The cycling conditions were: 1 cycle of 10 s at 95 °C, 30 s at 55 °C, and 30 s at 72 °C. The ampli-
cation reactions using 3 mM MgCl2 and 50 pmol of primer per reaction. The amount of each gene was normalized to a housekeeping gene (β-actin).

Plasmids, Transfections, and Fluorescence Microscopy—Plasmid con-

structs of full-length CSTD-short and CSTD-long fused to green fluorescent protein (GFP) cDNA were generated by cloning PCR products of the CSTD genes in-frame with GFP into pcDNA3.1/
CT-GFP-TOPO (Invitrogen) according to the manufacturer’s instruc-
tions. Human fibrosarcoma 11.1 (U1A) cells were grown in Dulbecco’s modified Eagle’s medium containing 2 mM l-glutamine, 50 μg/ml strep-
tomycin, 50 units/ml penicillin, pyruvate, and 10% heat-inactivated fetal calf serum. Cells were plated at 5 × 104 on glass coverslips in 24-well plates 16 h before transient transfection. Transfections using 2 μg of plasmid per well were performed by calcium phosphate (125 mM). GFP fluorescence was monitored 24 h after transfection.

Mitochondrial localization was assessed by fluorescence microscopy using MitoTracker or monocular antibodies against mouse cytochrome c or hsp-60. MitoTracker was added at 100 nM before cell plating and cells were imaged for 10 min. Cells were then fixed with 10% formaldehyde for 10 min at room temperature. Fixed cells that had not been treated with MitoTracker were incubated with anti-
cytochrome c or anti-Hsp monocular antibodies and revealed with Texas Red-coupled anti-mouse IgG1 antibodies. For cytochrome c de-
tection, permeabilization was carried out using 0.5% saponin as pre-
ventative agent as described (20). For hsp-60 detection, cells were perme-
abilized with 0.1% SDS as described (20). Coverslips were mounted on glass slides using Mowiol mounting medium and 2.5% DABCO (1,4-
diazabicyclo(2.2.2.)octane). Confocal microscopy analysis was carried out using a Zeiss LSM-510 microscope and software. Z-series optical

...
sections were performed at 0.5-μm increments. Green and red fluorescence emissions were collected separately to avoid fluorescence passage from one channel to the other.

Cytofluorimetry Analysis of Mitochondrial Transmembrane Potential and Cytochrome c Release—To measure changes in transmembrane potential (∆ψ), 11.1 (U1A) cells were first transfected with the C-terminal GFP constructs of CSTAD-S and CSTAD-L. Twenty-four hours after transfection the cells were loaded with 150 μM tetramethylrhodamine ethyl ester in phosphate-buffered saline, 1% bovine serum albumin for 15 min at 37°C. After the loading period the cells were rinsed with phosphate-buffered saline/bovine serum albumin and resuspended in 15 μM tetramethylrhodamine ethyl ester in phosphate-buffered saline/bovine serum albumin at room temperature. The ∆ψ of cells was measured by cytofluorimetry (FL3), and GFP-positive cells were identified simultaneously on FL1. As a positive control for membrane depolarization, cells were incubated with 1 μM staurosporine overnight.

Cytochrome c release was determined by cytofluorimetry using antibodies against cytochrome c, as previously described (21). Cell death was measured by cytofluorimetry after double-staining cells with propidium iodide and annexin V (22); both adherent cells and cells in suspension were collected for analysis.

Subcellular Fractionation—The cells used in these studies, 293 T cells, are derived from a human renal epithelial cell line that was transfected by an adenovirus E1A gene product. The cells were grown in Dulbecco’s modified Eagle’s medium containing 2% fetal calf serum, 100 μg/ml streptomycin, 50 units/ml penicillin, and 10% heat-inactivated fetal calf serum. Cells were plated at a density of 2 × 10^6 cells/10-cm dish the day before transfection. The cells were transiently transfected with 15 μg of plasmid per dish using calcium phosphate. Two days after transfection the cells were collected, resuspended in isotonic mitochondrial buffer (MB: 250 mM sucrose, 10 mM HEPES, 10 mM KCl, 2 mM MgCl2, 1 mM EGTA, pH 7.4), and lysed by 30–40 strokes with a Dounce homogenizer. The homogenate was centrifuged at 1000 × g for 5 min at 4°C to eliminate nuclei and unbroken cells. The supernatant was divided into nine aliquots and centrifuged at 10,000 × g for 15 min at 4°C to obtain mitochondria-enriched pellets. The pellets were resuspended in MB supplemented with or without 1% Triton X-100 and treated with protease K (1–10 μg/ml) on ice for 30 min. After boiling for 10 min in the presence of SDS loading buffer, the reaction mixtures were analyzed by SDS-PAGE and Western blotting.

Western Blot Analyses—The mitochondrial fractions were used for detection of VDAC, CSTAD-GFP fusion protein, and cytochrome c. The samples were separated by SDS-PAGE and transferred to nitrocellulose membranes, which were blocked with 3% nonfat milk in Tris-buffered saline containing 0.2% Tween 20 for 1 h at 37°C. Blots were immunostained with rabbit anti-VDAC polyclonal antibodies (Oncogene Research Products, San Diego, CA) at 1:2,000, anti-GFP polyclonal antibodies (Oncogene) at 1:2,000 in MB, and mouse anti–cytochrome c monoclonal antibody (Pharmaningen) at 1:5000 dilution at 4°C overnight and probed with a 1:10,000 dilution of goat anti-rabbit IgG or goat anti-mouse IgG antibodies coupled to horseradish peroxidase. Specific bands were visualized by enhanced chemiluminescence (PerkinElmer Life Sciences).

RESULTS

CSTAD Treatment Alters the Transcription of Genes in Activated T Cells—Two RDAs were performed on T cells activated for 4 and 24 h by ConA in the presence or absence of CSA, as described under “Materials and Methods.” Fifty clones from each RDA were sequenced; readable nucleotide sequences were obtained for 30 and 23 clones for the 4- and 24-h incubations, respectively, and the sequences were analyzed using the BLASTN program and the GenBank data base. Primers specific for the clones obtained were designed using the Oligo program (NBI). The effect of CSA on the level of expression of these genes was tested by RT-PCR on splenic T cells activated with ConA for 4 and 24 h in the presence or absence of CSA. Non-activated cells and cells cultured in the presence of CSA alone served as controls. Fig. 1 shows the level of mRNA accumulation for the four genes whose expression was altered by the immunosuppressor, as detected by RDA. As expected, induction of the IL-2 gene was prevented by the immunosuppressor (10), attesting to the effectiveness of the CSA treatment. Incubation of cells with CSA alone had no effect on IL-2 gene expression but strongly increased the accumulation of mRNA encoding EDG-1 and α-E-integrin (Fig. 1).

Expression of the synaptotagmin-2-like gene was barely detected in resting T cells, and its level was barely modified by T cell activation. In contrast, gene expression was up-regulated when activation was carried out in the presence of CSA (Fig. 1). The mRNA encoding the gene that we have named CSA-conditional, T cell activation-dependent (CSTAD) was detected in non-activated T cells, but activation did not modify its amount. However, activation in the presence of CSA resulted in a large increase in the mRNA levels (Fig. 1). We, therefore, focused subsequently on the characterization of the products of this gene.

Genomic Localization and Tissue Distribution of CSTAD—Rapid amplification of cDNA ends was performed to obtain the complete sequence of the CSTAD cDNA, revealing a sequence of 901 nucleotides. Alignment analyses with the GenBank database showed that the CSTAD cDNA shares 785 nucleotides at the 3′ end with a Riken cDNA clone of 816 bases encoding a gene with unknown function located on mouse chromosome 2 (GenBank accession number AK020589; Gene ID, ENSMUSTG00000040463). However, the two cDNAs differ in their 5′ end region by a stretch of 31 nucleotides, which are unique to the Riken clone, and by a sequence of 116 bases that are present exclusively in the CSTAD cDNA. The localization of the CSTAD cDNAs was determined from GenBank data base analysis (Fig. 2A).

Two exons had been defined in the Riken clone. The coding sequences and the translation products are represented in Fig. 2B. The Riken and CSTAD cDNAs, thus, represent two alternative splice variants of the CSTAD gene. We named them CSTAD-S (identified by Riken) for the short and CSTAD-L (identified by RDA) for the long isoform, respectively. These
cDNA encode two proteins of 104 (CSTADp-S) and 141 amino acids (CSTADp-L).

Up-regulation of the CSTAD gene could change the expression level of both the long and short CSTAD forms. This was assessed by PCR using the specific primers shown in Fig. 2A. Both CSTAD-L and CSTAD-S mRNAs increased in T cells activated for 4 and 24 h in the presence of CSA (Fig. 3A).

Real-time PCR was used to quantify the amount of both mRNAs (Fig. 3B). The data are presented as the ratio of the amount of CSTAD-L and -S in T cells activated for 4 and 24 h in the presence of CSA to the amount of mRNA for the other experimental groups. The ratio of CSTAD-L and -S in CSA-treated cells versus non-activated cells is also shown. Both the CSTAD-L and CSTAD-S isoforms increased by a factor of 4–5 at 4 h compared with T cells activated by ConA. Similar increases were found for the other conditions (Fig. 3). At 24 h CSTAD increased by a factor of 10–13 compared with ConA-activated T cells. However, the absolute amount of the CSTAD isoforms decreased at 24 h (Fig. 3, panel A).

We next investigated the tissue distribution of the two alternative splice variants of CSTAD. All tissues tested positive for the two alternative splice variants, but the relative expression of the isoforms varied considerably. CSTAD-L is abundant in the intestines, thymus, and skin (Fig. 4), whereas CSTAD-S is highly represented in the skin but is less abundant in the thymus and barely detectable in the intestines.

CSA Treatment during Immunization Increases the Expression of CSTAD in Mice—Because a polyclonal activator induced CSTAD overexpression in vitro, we next evaluated whether CSTAD expression may change during physiological conditions in vivo. For this purpose we used transgenic mice expressing a T cell receptor specific for the pigeon cytochrome c peptide (16), whose immunization with the pigeon cytochrome c peptide leads to the expression of a number of cytokine-encoding genes (23). The mice were treated with CSA 1 day before and on the day of immunization, as previously described (23). As shown in Fig. 5, the efficiency of CSA-induced immunosuppression is attested by the blockade of the IL-2 gene. Expression of CSTAD-L and CSTAD-S was measured in mice treated with CSA alone or after immunization with the pigeon cytochrome c peptide with or without CSA. Mice were sacrificed 6 h after immunization, and the T cells were purified. The level of expression of the two CSTAD isoforms is shown in Fig. 5. Although the two alternative splice variants were detected in untreated or immunized mice, they were both up-regulated after immunization in the presence of CSA. This demonstrates
that CSTAD gene transcription in T cells activated in the presence of the immunosuppressor may be physiologically relevant.

Blockade of the Calcineurin Activation Pathway Increases CSTAD Expression—Two other immunosuppressors, FK506 and rapamycin, were used to ascertain whether the up-regulation of the CSTAD gene is linked to the inhibition of the calcineurin pathway. FK506, like CSA, acts on calcineurin, whereas rapamycin interferes with activation due to IL-2 binding to its high affinity receptor (for review, see Refs. 24 and 25).

Splenic T cells were activated for 4 h in the presence or absence of CSA, FK506, or rapamycin. Control cells received the immunosuppressors but without activation. At the end of the stimulation, RT-PCR was carried out using CSTAD-L- and CSTAD-S-specific primers. As shown in Fig. 6, the IL-2 gene encoding mRNA was induced in T cells activated by ConA in the presence or absence of rapamycin but not in the presence of CSA or FK506, demonstrating the specificity of the immunosuppression. mRNA encoding for CSTAD-S and CSTAD-L accumulated in large amounts when activation was carried out in the presence of CSA or FK506. In contrast, rapamycin had no effect, strongly suggesting that the blockade of the calcineurin pathway is involved in up-regulation of the CSTAD gene.

CSTAD-S and CSTAD-L Colocalize with Mitochondrial Markers—To identify the cellular localization of the CSTAD gene products, the cDNAs corresponding to the two isoforms were fused with the GFP gene. N-terminal and C-terminal GFP constructs were made. After transient transfection in mouse 3T3 fibroblasts, only the C-terminal construct gave a reproducible, high level of expression of the fused genes. Twenty-four hours after transient transfection the cells were analyzed by confocal microscopy. Both long and short CSTAD proteins were found in discrete subcellular organelles that morphologically resemble mitochondria (results not shown). To avoid competition with endogenous CSTAD proteins, a human fibroblast cell line, 11.1 (U1A), was then used to confirm mitochondrial localization, since an orthologous CSTAD gene was not found in the human genome. When mitochondria were labeled with MitoTracker, which accumulates in active mitochondria, or antibodies against cytochrome c or hsp-60, the CSTAD-GFP proteins were found to co-localize with the three mitochondrial markers (Fig. 7). However, better co-localization was observed between CSTAD-GFP and MitoTracker or hsp-60 (Fig. 7).
of proteinase K concentrations as the CSTAD proteins. Conversely, cytochrome c, which is a marker for the intramembrane space, is not cleaved by the protease, except when the mitochondria are solubilized in detergent (Fig. 8). Thus, these experiments strongly suggest that the CSTAD proteins are localized on the outer membrane of mitochondria.

CSTAD-S and CSTAD-L Depolarize the Mitochondrial Membrane Potential—After a 24-h transfection with the GFP constructs of CSTAD-S and CSTAD-L both isoforms were shown to decrease the transmembrane potential (∆Ψ) across the mitochondrial inner membrane (Fig. 9), although CSTAD-S was more effective than CSTAD-L. Among cells expressing GFP, more than half of the cells transfected with CSTAD-S had depolarized membranes compared with almost one-fifth for cells transfected with CSTAD-L.

Mitochondrial membrane polarization often leads to cytochrome c release from mitochondria. However, neither the short nor the long isoform led to release of cytochrome c into the cytosol (data not shown). Consistent with these results, we also observed that overexpression of either isoform does not lead to cell death of transfected cells. Neither apoptosis (as measured by annexin V labeling) nor necrosis (assayed by propidium iodide labeling) was observed in transfected cells (data not shown).

DISCUSSION

We have previously reported that activation of T cells in the presence of CSA induces the synthesis of a large number of proteins (15). However, the proteomic analysis of the newly synthesized polypeptides did not permit their characterization, an essential step in understanding the mechanisms underlying the deleterious effects associated with CSA therapy. Use of the RDA technique allowed us to identify genes that are modulated in activated T cells by the immunosuppressor either negatively or positively. Among these genes we have presently focused on an essential step in understanding the mechanisms underlying the deleterious effects associated with CSA therapy. Use of the CSA-conditional, T cell activation-dependent gene, CSTAD.

The CSTAD cDNA obtained in the present study is 901 nucleotides long. It possesses an open reading frame beginning with an ATG at position 1, a stop codon at position 426, and a potential polyadenylation site at position 880. This cDNA shares 784 nucleotides with a Riken cDNA clone belonging to a gene of unknown function(s) located on mouse chromosome 2 (Ref. 27, accession number AK020589). The RDA and the Riken clones were named CSTAD-L and -S for the long and short isoform, respectively. They share a common sequence of 784 nucleotides located in the 3' region and differ in their 5' region by a sequence of 116 nucleotides, which is unique to CSTAD-L, and by a sequence of 31 nucleotides, which is found exclusively in CSTAD-S. The CSTAD-S cDNA is encoded by two exons separated by an intron of 13,084 bases (gene ID ENSMUSG00000040463). The 116 nucleotides that are unique to the CSTAD-L cDNA are located immediately upstream of the CSTAD-S second exon and are, thus, situated in this intervening sequence. A third alternative splice variant was predicted in the project Ensembl (www.ensembl.org) from the gene structure using a combination of calculations (Exonerate, Blast, and Est-Genome). PCR amplification using primers located in exon 1 and exon 2 of this presumed cDNA did not produce any amplified material from resting, activated, or activated and immunosuppressed T cells, thus excluding the existence of such an isoform in these cells. From our present data and the structure of the Riken cDNA clone we propose the organization of the CSTAD gene illustrated in Fig. 2. The “Riken” or CSTAD-S variant originates from the splicing and joining of proteinase K concentrations as the CSTAD proteins. Conversely, cytochrome c, which is a marker for the intramembrane space, is not cleaved by the protease, except when the mitochondria are solubilized in detergent (Fig. 8). Thus, these experiments strongly suggest that the CSTAD proteins are localized on the outer membrane of mitochondria.

CSTAD-S and CSTAD-L Depolarize the Mitochondrial Membrane Potential—After a 24-h transfection with the GFP constructs of CSTAD-S and CSTAD-L both isoforms were shown to decrease the transmembrane potential (∆Ψ) across the mitochondrial inner membrane (Fig. 9), although CSTAD-S was more effective than CSTAD-L. Among cells expressing GFP, more than half of the cells transfected with CSTAD-S had depolarized membranes compared with almost one-fifth for cells transfected with CSTAD-L.

Mitochondrial membrane polarization often leads to cytochrome c release from mitochondria. However, neither the short nor the long isoform led to release of cytochrome c into the cytosol (data not shown). Consistent with these results, we also observed that overexpression of either isoform does not lead to cell death of transfected cells. Neither apoptosis (as measured by annexin V labeling) nor necrosis (assayed by propidium iodide labeling) was observed in transfected cells (data not shown).

DISCUSSION

We have previously reported that activation of T cells in the presence of CSA induces the synthesis of a large number of proteins (15). However, the proteomic analysis of the newly synthesized polypeptides did not permit their characterization, an essential step in understanding the mechanisms underlying the deleterious effects associated with CSA therapy. Use of the RDA technique allowed us to identify genes that are modulated in activated T cells by the immunosuppressor either negatively or positively. Among these genes we have presently focused on an essential step in understanding the mechanisms underlying the deleterious effects associated with CSA therapy. Use of the CSA-conditional, T cell activation-dependent gene, CSTAD.

The CSTAD cDNA obtained in the present study is 901 nucleotides long. It possesses an open reading frame beginning with an ATG at position 1, a stop codon at position 426, and a potential polyadenylation site at position 880. This cDNA shares 784 nucleotides with a Riken cDNA clone belonging to a gene of unknown function(s) located on mouse chromosome 2 (Ref. 27, accession number AK020589). The RDA and the Riken clones were named CSTAD-L and -S for the long and short isoform, respectively. They share a common sequence of 784 nucleotides located in the 3’ region and differ in their 5’ region by a sequence of 116 nucleotides, which is unique to CSTAD-L, and by a sequence of 31 nucleotides, which is found exclusively in CSTAD-S. The CSTAD-S cDNA is encoded by two exons separated by an intron of 13,084 bases (gene ID ENSMUSG00000040463). The 116 nucleotides that are unique to the CSTAD-L cDNA are located immediately upstream of the CSTAD-S second exon and are, thus, situated in this intervening sequence. A third alternative splice variant was predicted in the project Ensembl (www.ensembl.org) from the gene structure using a combination of calculations (Exonerate, Blast, and Est-Genome). PCR amplification using primers located in exon 1 and exon 2 of this presumed cDNA did not produce any amplified material from resting, activated, or activated and immunosuppressed T cells, thus excluding the existence of such an isoform in these cells. From our present data and the structure of the Riken cDNA clone we propose the organization of the CSTAD gene illustrated in Fig. 2. The “Riken” or CSTAD-S variant originates from the splicing and joining of CSTAD isomers depends on the blockade of the calcineurin pathway. Spleen cells were activated with ConA either alone (ConA) or in the presence of CSA (ConA + CSA), FK506 (ConA + FK506), or rapamycin (ConA + RAPA). Non-activated cells were cultured with CSA (CSA), FK506 (FK506), or rapamycin (RAPA). Four hours after activation the cells were recovered, and T cells were purified. RT-PCR was performed using primers specific for the short and long isoforms, and the amplified material was analyzed as described in the legend of Fig. 1.

Fig. 6. Accumulation of mRNA encoding the long and short CSTAD isoforms depends on the blockade of the calcineurin pathway. Spleen cells were activated with ConA either alone (ConA) or in the presence of CSA (ConA + CSA), FK506 (ConA + FK506), or rapamycin (ConA + RAPA). Non-activated cells were cultured with CSA (CSA), FK506 (FK506), or rapamycin (RAPA). Four hours after activation the cells were recovered, and T cells were purified. RT-PCR was performed using primers specific for the short and long isoforms, and the amplified material was analyzed as described in the legend of Fig. 1.

Fig. 7. Mitochondrial localization of CSTAD-L and CSTAD-S GFP-fused proteins. Human fibroblasts were transfected with a plasmid encoding either the long (upper panels) or short (lower panels) CSTAD isoform linked to the GFP gene. Twenty four hours later cells were fixed, and mitochondria were stained using MitoTracker (center column, CSTAD-L-GFP or CSTAD-S-GFP (green); center column, MitoTracker, cytochrome c or hsp-60 labeling (red); right column, overlay of green and red fluorescence.)
exon 1 and 2B, whereas the CSTAD-L variant derives from the direct transcription of the sequence encoding exon 2A and 2B. CSTAD encodes two proteins of 104 and 141 amino acids. The corresponding sequences do not share obvious homology with other proteins in the data bank and do not contain potential glycosylation or phosphorylation sites.

The CSTAD gene is localized on mouse chromosome 2 (2A3) between the growth factor-independent 1B (gfi-1B) and the carboxyl ester lipase (cel) genes. These genes (Gfi-1B and Cel) have orthologues on human chromosome 9 (9q34.13 and 9q34.3). However, an orthologue of CSTAD was not found in the human gene bank data base. In addition, PCRs using the murine CSTAD-S and CSTAD-L primers did not yield amplified material on cDNA from Jurkat cells (data not shown), suggesting that CSTAD has no counterpart in humans; nevertheless, the presence of a functional homologue of CSTAD in humans cannot be excluded.

Up-regulation of CSTAD, as measured by the real-time PCR of the short and long form, is of the order of 5–12-fold in T cells activated in the presence of CSA compared with ConA-activated or non-activated T cells. This increased mRNA accumulation is observed 4 and 24 h after activation, although the relative amount of the mRNAs is larger at 4 h than at 24. No major differences in the relative quantity of the long and short isoforms were detected, suggesting that activation in the presence of CSA does not alter the mechanism(s) involved in the maturation of CSTAD mRNA precursors. However, the expression of the two alternative splice variants may be differentially regulated, as illustrated by the differences in the levels of CSTAD-L and CSTAD-S mRNA in different tissues. Both isoforms are detected in all the organs tested, and although CSTAD-L and -S are highly represented in the skin, the long isoform is predominantly abundant in the intestine and the thymus, whereas the short form is expressed at higher levels in brain and kidney. It is interesting to note a correlation between the high level of CSTAD-L mRNA accumulation and the rapid cell turnover of the cells in skin, thymus, and intestine.

CSTAD up-regulation is also observed in mice immunized in the presence of CSA. A low level of CSTAD mRNA accumulation is found in splenic T cells of naive or peptide-immunized mice. CSA treatment alone had no effect on the relative abundance of the two alternative splice variants. Immunization in the presence of CSA resulted in a substantial increase of both isoforms. One may, therefore, conclude that CSTAD gene up-regulation by the immunosuppressor is of physiological relevance in mice.

The inhibition of calcineurin activity by the CSA-cyclophilin complexes has been well characterized. The inhibition prevents the dephosphorylation of NFAT, precluding its migration to the nucleus, a mandatory step for the transcription of growth and differentiation genes necessary for the proper effector function of T cells (7, 28). FK506, another immunosuppressor, also in-

Fig. 8. CSTAD-S and CSTAD-L isoforms reside on the outer membrane of mitochondria. Mitochondrial preparations from 283 T cells transiently transfected with CSTAD-S or CSTAD-L were treated with various concentrations of proteinase K in the absence (−) or presence (+) of Triton X-100 at 4 °C for 30 min. The samples were analyzed by Western blot with rabbit anti-GFP polyclonal antibodies (upper panels), rabbit anti-VDAC polyclonal antibodies (middle panels), and mouse anti-cytochrome c (Cyt c) monoclonal antibody (lower panels).

Fig. 9. Overexpression of CSTAD leads to depolarization of the mitochondrial transmembrane potential. Cells were transfected with a construct encoding GFP alone (A) or the short (C) and long (D) isoforms of CSTAD co-expressing GFP. As a control (B), untransfected cells were treated with staurosporine. The transmembrane potential (ΔΨ) was measured using tetramethylrhodamine ethyl ester, which accumulates in active mitochondria but not in depolarized mitochondria. By cytofluorimetry, both transfected (GFP-expressing) cells and ΔΨ were measured simultaneously. The numbers in each quadrant refer to the percentage of cells in each quadrant.
hibits calcineurin, and activation in its presence also induces CSTAD gene up-regulation. In contrast, rapamycin, which interferes with a late signal originating from the occupancy of the IL-2 receptor, does not induce CSTAD overexpression. Taken together, these data show that inhibition of calcineurin in activated T cells up-regulates CSTAD gene expression, suggesting that, depending on its activation/inactivation status, this enzyme could be involved both in positive and negative control of gene expression. Even though activation is required for CSA to modify the expression of the CSTAD gene in vitro or in vivo, CSA by itself up-regulates α-E-integrin and EDG-1 gene transcription (Fig. 1). Similar CSA-induced gene up-regulation was also reported for IL-6 and transforming growth factor-β in a variety of cells (29–31). Whether the up-regulation of these genes is independent from the activation of a non-classical calcineurin pathway remains to be determined.

The mechanisms of protein import into the different mitochondrial compartments (the inner or outer membrane, the intermembrane space, or matrix) are being investigated extensively by a number of laboratories, which has led to the identification of targeting signals located in the N-terminal end of mitochondrial-located proteins (for review, see Ref. 32). However, none of the targeting signals described until now has been found in either the long or short forms of CSTAD. Internal signals have also been described (33, 34), but these are also absent from both CSTAD isoforms. Nevertheless, many mitochondrial import signals still remain to be identified, and it is still possible that a heretofore uncharacterized signal may be responsible for targeting of CSTAD to mitochondria.

cDNAs encoding CSTAD fused to GFP were transfected in a human cell line, and their localization was analyzed by confocal microscopy. A human cell line was chosen for most of the localization studies since a homologous protein. Both CSTAD isoforms were sorted predominantly to mitochondria, as the corresponding GFP-tagged GSTAD-S and GSTAD-L isoforms were sorted predominately to mitochondria, since they are cleaved by protease K. As a positive control, VDAC proteins, which are known to be expressed on mitochondria and provoke membrane depolarization, but consistent

Mitochondrial Protein Induced by Cyclosporin A

with the anti-apoptotic properties of CSA acting at other levels, CSTAD-induced mitochondrial membrane depolarization does not lead to apoptosis. This finding reveals the presence of a new mitochondria-dependent signaling pathway stimulated by CSA treatment.

Acknowledgments—We thank J. Ragimbeau for advice in cell labeling and Dr. F. Huetz for constructive discussions. A. Lim for helpful advice, and Dr. S. Susin for the anti-Hsp-60 and anti-cytochrome c antibodies. Dr. D. Dunn University of Utah, Utah Genome Center, kindly provided the genomic clone. We thank E. Perret and P. Roux from the Plate-Forme d’Imagerie Dynamique at the Pasteur Institute for technical help with confocal microscopy.

REFERENCES

Characterization of a Gene Encoding Two Isoforms of a Mitochondrial Protein Up-regulated by Cyclosporin A in Activated T Cells
Laurent Mascarell, Rodolphe Auger, Andres Alcover, David M. Ojcius, Thomas Jungas, Véronique Cadet-Daniel, Jean M. Kanellopoulos and Paolo Truffa-Bachi

doi: 10.1074/jbc.M313770200 originally published online December 18, 2003

Access the most updated version of this article at doi: 10.1074/jbc.M313770200

Alerts:
• When this article is cited
• When a correction for this article is posted

Click here to choose from all of JBC's e-mail alerts

This article cites 39 references, 10 of which can be accessed free at http://www.jbc.org/content/279/11/10556.full.html#ref-list-1