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Research on Arithmetic

an English translation of

Recherches d’Arithmétique

By Joseph-Louis Lagrange

Nouveaux Mémoires de l’Académie royale des Sciences

et Belles-Lettres de Berlin 1773 (1775), pp. 265-312.∗

Translated by Erik R. Tou
University of Washington Tacoma

etou@uw.edu

This research has for its object the numbers which may be represented by
the formula Bt2 +Ctu+Du2, where B, C, D are assumed to be given whole
numbers, and t, u are also whole – though variable – numbers.a First, I shall
give the manner by which to find all the different forms whose divisors are the
kind of numbers that are susceptible to this representation. Next, I shall give a
method for reducing these forms to the smallest number possible: I shall show
how one may draw up tables for the practice, and I shall note the use of these
tables in the research of the divisors of these numbers. Finally, I shall prove
several Theorems on prime numbers of the same form Bt2 +Ctu+Du2, some
of which are already known, but have not yet been proven, and of which others
are entirely new.

Note.

∗A sequel to this article, Suite de Recherches d’Arithmétique, appeared in the same journal
for the year 1775 (pp. 323-356). Both articles appeared in the Oeuvres de Lagrange on pp.
695-758 and pp. 759-795 of Vol. 3.

aLagrange used the word “indéterminés” in French, though here we refer to such “indeter-
minate numbers” as variables.
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1. We always suppose in the following that all letters designate whole
numbers, either positive or negative, and that ordinarily we will represent given
numbers by the first letters of the alphabet, and variables by the last letters of
the alphabet.

Observation.

2. The first-degree formula Bt + Cu, where B and C are arbitrary given
numbers, and relatively prime, may represent any arbitrary number. But the
same is not true for the second-degree formula Bt2 + Ctu + Du2, since we
have proven elsewhere (see the Mémoires de l’Académie for the years 1767 and
1768)b that the equation

A = Bt+ Cu

is always solvable in whole numbers whatever the numbers A, B, C may be,
provided that the last two are relatively prime, but the equation

A = Bt2 + Ctu+Du2

is so only in certain cases, and when certain conditions are placed on the given
numbers A, B, C, D. We must say the same thing, with even more reason, of
third-degree formulas and beyond.

Scholium.

3. There is then a great difference between first-degree formulas and those
of higher degrees, the former which can represent all the possible numbers, and
the latter which can only represent certain numbers that must be distinguished
from all the others by particular characteristics. Very great Geometers have
already considered the properties of numbers which can be represented by certain
formulas of the second degree , such as t2 + u2, t2 + 2u2, t2 + 3u2, t4 + u4,
t8 + u8, etc. (see the Works of M. de Fermat and the Novi Commentarii of St.
Petersburg, Vol. 1, 4, 5, 6, 8)c but I know of no person who has yet treated

bThis probably refers to “Sur la solution des problèmes indéterminés du second degré”
(Mémoires 1767) and “Nouvelle méthode pour résoudre les problèmes indéterminés en nombres
entiers” (Mémoires 1768).

cThis likely refers to the following works of Leonhard Euler: “Theoremata circa divisores
numerorum” (E134, Vol. 1); “De numeris, qui sunt aggregata duorum quadratorum” (E228,
Vol. 4); “Demonstratio theorematis Fermatiani omnem numerum primum formae 4n+1 esse
summam duorum quadratorum” and “Demonstratio theorematis Fermatiani omnem numerum
sive integrum sive fractum esse summam quatuor pauciorumve quadratorum” (E241-242, Vol.
5); “Solutio generalis quorundam problematum Diophanteorum, quae vulgo nonnisi solutiones
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this matter in a direct and general manner, nor given rules for finding a priori
the main properties of the numbers which can be expressed via given formulas.

As this subject is a very curious one in Arithmetic, and merits particularly
the attention of the Geometers by the great difficulties it contains, I will try
to treat it more thoroughly than has yet been done. But at present I will limit
myself to second-degree formulas, and I will begin by examining what the form
must be of the divisors of those numbers which may be expressed by these kinds
of formulas.

Theorem I.

4. If the number A is a divisor of a number represented by the formula

Bt2 + Ctu+Du2,

supposing t and u are relatively prime, I say that this number A will necessarily
have the form

A = Ls2 +Msx+Nx2,

where we will have
4LN −M2 = 4BD − C2,

s and x also being relatively prime.
Let a be the quotient obtained from the division of Bt2 + Ctu + Du2 by

A, so that we have
Aa = Bt2 + Ctu+Du2,

and let b be the greatest common divisor of a and u (if a and u are relatively
prime, we will have b = 1), so that by writing a = bc and u = bs, c and s are
relatively prime. Therefore we have

Abc = Bt2 + Cbts+Db2s2;

consequently Bt2 will be divisible by b. But, t and u being relatively prime (by
hypothesis), t will also be relatively prime to b, which is a divisor of u. Therefore
it must be that B is divisible by b. So we will have B = Eb, and, the equation
being divisible by b, it will become

Ac = Et2 + Cts+Dbs2.

speciales admittere videntur” and “Specimen de usu observationum in mathesi pura” (E255-
256, Vol. 6); “Theoremata arithmetica nova methodo demonstrata” and “Supplementum
quorundam theorematum arithmeticorum, quae in nonnullis demonstrationibus supponuntur”
(E271-272, Vol. 8).
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Since c and s are relatively prime, we may assume (by the preceding Observation)
that t = θs+ cx, which, upon substitution, will give

Ac = (Eθ2 + Cθ +Db)s2 + (2Eθc+ Cc)sx+ Ec2x2,

so that it will be necessary that the number (Eθ2 + Cθ +Db)s2 is divisible by
c. And since c and s are relatively prime, it must be that Eθ2 + Cθ + Db is
divisible by c; therefore dividing the whole equation by c, and setting

L =
Eθ2 + Cθ +Db

c
,

M = 2Eθ + C,

N = Ec,

we will have A = Ls2 +Msx+Nx2.
Now 4LN −M2 will be equal to 4E(Eθ2 + Cθ + Db) − (2Eθ + C)2 =

4EDb− C2 = 4BD − C2, because B = Eb. Therefore, etc.
Since t and u are relatively prime (by hypothesis), t and s will be as well,

because u = bs. But if x and s are not relatively prime it is clear that t should
be divisible by their greatest common divisor, because t = θs + cx. Since this
cannot be, it follows that x and s will necessarily be relatively prime whenever
t and u are relatively prime.

Theorem II.

5. Every second-degree formula such as this one

Ls2 +Msx+Nx2,

in which M is larger than L or N (disregarding the signs of these quantities),
may be transformed into another of the same degree, as

L′s′2 +M ′s′x′ +N ′x′2,

for which we will have

4L′N ′ −M ′2 = 4LN −M2,

and where M ′ will be less than M .
Suppose, for example, that M > L. We will have s = mx + s′, and the

proposed formula will become

(Lm2 +Mm+N)x2 + (2Lm+M)xs′ + Ls′2,
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or, by changing x to x′,

L′s′2 +M ′s′x′ +N ′x′2,

where we will have

L′ = L,

M ′ = 2Lm+M,

N ′ = Lm2 +Mm+N.

So first we will have, regardless of m,

4L′N ′ −M ′2 = 4L(Lm2 +Mm+N)− (2Lm+M)2 = 4LN −M2.

Since L is less than M (by hypothesis), it is clear that we may choose the
number m so that 2Lm+M becomes less than M ; therefore, etc.d

Corollary 1.

6. Therefore, if in the transformed L′s′2+M ′s′x′+N ′x′2 one of the numbers
L′ or N ′ is less than M ′, we may obtain another transformed expression such
as

L′′s′′2 +M ′′s′′x′′ +N ′′x′′2

where we will likewise have 4L′′N ′′ − M ′′2 = 4L′N ′ − M ′2 = 4LN − M2

and where M ′′ will be less than M ′; and so on. Therefore, as the seriese of
numbers M , M ′, M ′′, etc. cannot go to infinity because the numbers must all
be whole and decreasing from one to the next, we must necessarily arrive at a
transformation which I will represent as

Py2 +Qyz +Rz2,

in which Q will not be greater than P , nor R, and where we will have 4PR −
Q2 = 4LN −M2.

Corollary 2.

7. If the numbers s and x from the proposed formula are relatively prime,
it is clear that the numbers s′ and x′ from the transformation will also be
relatively prime; for if they were not it would follow necessarily, because x′ = x

dIt would suffice to choose m so that |m| < |M/L|.
eLagrange uses série here, though a more modern rendering would refer to this as a se-

quence.
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and s = mx+ s′, that s was divisible by the greatest common divisor of s′ and
x.

Therefore, for the same reason, the numbers s′′ and x′′ from the second
transformation will also be relatively prime, and so on, from which we may
conclude that the numbers y and z from the last transformation will necessarily
be relatively prime, if the numbers s and x are relatively prime.

Theorem III.

8. If A is a divisor of a number of the form

Bt2 + Ctu+Du2,

with t and u being relatively prime, I say that the number A will necessarily
have the form

Py2 +Qyz +Rz2,

with y and z also being relatively prime, and P , Q, R being such that

4PR−Q2 = 4BD − C2,

Q not being greater than P or R, disregarding the signs of P , Q, and R.
The proof of this Theorem follows naturally from the two preceding theo-

rems, and their Corollaries.

Corollary 1.

9. If 4BD−C2 is positive, it must be that 4PR is also positive; so, because
P ≥ Q and R ≥ Q, it is clear that 4PR will also be ≥ 4Q2, and consequently
4PR − Q2 ≥ 3Q2. Therefore, we will also have 4BD − C2 ≥ 3Q2, and from
this it follows that

Q ≤
√

4BD − C2

3
.

Corollary 2.

10. Now suppose 4BD−C2 is negative, so that C2−4BD is positive; since
Q is not greater than P or R we will therefore have that the case Q2−4PR > 0
cannot happen unless 4PR is a negative number; so −4PR will be a positive
number ≥ 4Q2, because P ≥ Q and R ≥ Q. So then Q2−4PR will be ≥ 5Q2,
and consequently C2 − 4BD will also be ≥ 5Q2; therefore it must be that

Q ≤
√
C2 − 4BD

5
.
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Corollary 3.

11. Therefore, since Q is a whole number, we can only take for Q positive
or negative whole numbers which do not surpass these discovered limits, also
understanding zero to be among these whole numbers. From this we see that
Q can only have a fixed number of different values.

Furthermore, it is clear that for the equation 4PR − Q2 = 4BD − C2

to subsist in whole numbers, it must be that Q is even or odd, according to
whether C is even or odd, which even further limits the number of values of Q.

Knowing Q, we will easily find P and R by the same equation; so because

PR = 4BD−C2+Q2

4 it is clear that we can only take for P and R the factors

of the whole number Q2+4BD−C2

4 , taking care to reject those for which one or
both would be greater than Q.

Problem I.

12. Find all the possible forms for the divisors of those numbers which are
represented by the second-degree formula

Bt2 + Ctu+Du2,

with t and u being relatively prime.
This is obvious since we have just demonstrated above that each divisor of

the proposed formula is reducible to the form

Py2 +Qyz +Rz2,

with y and z being relatively prime. So, the difficulty is reduced to finding the
values of the coefficients P , Q, R when B, C, and D are given.

To this end, I distinguish between two cases: one in which the number
4BD − C2 is positive, and the other when this number is negative.

1◦. Let 4BD − C2 = K, with K designating a positive number. First,
we will determine Q from these conditions: from whether Q is even or odd it

follows that K will be the same, and Q does not exceed the number ±
√

K
3 .

Then we will determine P and R by these conditions: that P and R are two

factors of the number K+Q2

4 , and that each of these factors is not less than Q
(Articles 9 and 11).

2◦. Let 4BD − C2 = −K. We will determine Q by these conditions:
whether Q is even or odd it follows that K will be the same, and Q does not

exceed the number ±
√

K
5 . Next we will determine the corresponding values

of P and R by these conditions: that P and R are two factors of the number
Q2−K

4 , and that each of them is not less than Q (Articles 10 and 11).

9
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Remark 1.

13. If we have 4BD − C2 = 0, then with K being = 0 we could only take
Q = 0, and then we will also have PR = 0, so that one of the numbers P or R
will be zero and the other can be anything we would like. But it is necessary to

remark that in this case the formula Bt2+Ctu+Du2 reduces to (2Bt+Cu)2

4 , so
that as 2Bt+ Cu may represent any arbitrary number (Article 2), the divisors
of the proposed formula may also be arbitrary.

Remark 2.

14. The same thing must take place, in general, when the formula Bt2 +
Ctu+Du2 is the product of two rational, first-degree formulas such as at+ bu
and ct + du, each of which may represent arbitrary numbers (Article 2). This
is what occurs when 4BD − C2 is equal to a negative square. So, supposing
4BD − C2 = −H2, we have

Bt2 + Ctu+Du2 =
(2Bt+ (C +H)u)(2Bt+ (C −H)u)

4B
.

Though in this case any number can be a divisor of the formula in question,
if we search the formulas of the divisors in the preceding Problem, we will find
them to be as in the other cases, so that we must conclude that these formulas
contain all the possible numbers.

For the rest we have 4PR −Q2 = 4BD − C2 = −H2, and it is clear that
the general formula of the divisors Py2 +Qyz +Rz2 will also be resolvable in
two rational, first-degree formulas.

Remark 3.

15. It is remarkable that the formulas for the divisors only depend on
the value of K, which is to say, the number 4BD − C2. But it is easy to
see the reason by noting that the formula Bt2 + Ctu + Du2 may reduce to
(2Bt+Cu)2+(4BD−C2)u2

4B , so that the divisors of the formula Bt2 + Ctu + Du2

may also be regarded as divisors of the more simple formula x2 ±Ku2.
From this it follows that it suffices to consider the formulas of this last

type, and for that we will add the following Problem, which may be regarded
as a special case of the preceding one, but which fundamentally has the same
generality.

Problem II.
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16. To find the possible formulas for the divisors of numbers of the form
t2 ± au2, a being a given arbitrary positive integer, and t and u being variable,
relatively prime numbers.

First, consider the formula t2 + au2. Comparing to the general formula
from Problem I, we have B = 1, C = 0, D = a, thus K = 4a; therefore

Q will be even and it will not be greater than ±
√

4a
3 ; also making Q = ±2q

and regarding q as positive, it must be that q is not >
√

a
3 ; then we have

PR = 4a+4q2

4 = a+ q2. So then if p and r denote two factors of a+ q2, neither
of which is less than 2q, we will have

py2 ± 2qyz + rz2

for the general formula of the divisors of t2 + au2.
It is worth noting that since pr = a+ q2, p and r must have the same sign,

and it is clear that they must be positive so that py2±2qyz+rz2 can represent
positive numbers.

Furthermore, since this formula does not change the form of y when putting
p in place of r, it will not be necessary to take take successively for p each of
the factors of a + q2, and for r all the corresponding factors. That is why, in
each pair of factors of a+ q2, it will suffice to always take p to be the smallest
and r to be the largest. This is how we will proceed in what follows.

Second, consider the formula t2 − au2. We have B = 1, C = 0, D = −a,
thus K = 4a, as above; this is why Q = ±2q will be the same, and it must be
that q is not >

√
a
5 ; so we will have PR = q2 − a. So then if we designate

by p and r two factors of a− q2, neither of which is less than 2q, we will have
P = p, R = −r, or P = −p, R = r. These will give the two formulas{

py2 ± 2qyz − rz2,
− py2 ± 2qyz + ry2

for the divisors of t2−au2. We will find the same thing for the formula au2−t2.
As for the numbers p and r, we take both to be positive, and suppose always

that p is the smaller of the two factors of a− q2, and r is the larger, as we have
done until now. It is clear that by changing the signs of p and r, or putting one
of these numbers in place of the other, we will not produce any new formulas.

Corollary.

17. If we multiply the formula py2 ± 2qyz + rz2 by p, it can be put into
the form (py ± qz)2 + (pr − q2)z2, which is to say (because pr = a + q2) the

11
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form (py ± qz)2 + az2, which is the same as the formula t2 + au2. Then it
follows that every divisor of a number of the form t2 + au2 will also necessarily
be of the same form if p has no values other than unity, or will become unity
after being multiplied by one of the values of p (if there are several). We will
prove the same, that the formulas py2 ± 2qyz − rz2 and −py2 ± 2qyz + rz2

being multiplied by p will become (because pr = a− q2) (py ± qz)2 − az2 and
−(py ± qz)2 + az2. So then every divisor of a number of the form t2 − au2
or au2 − t2 will be necessarily of the one or the other of these two forms if p
is unity, or else will always become unity after being multiplied by one of the
values of p, if there is more than one.

18. Theorems on the divisors of the numbers of the form

t2 + au2,

t and u being relatively prime.

I.

Let a = 1, so q is not >
√

1
3 ; thus q = 0 and pr = 1; thus p = 1 and r = 1.

Therefore the divisors of the numbers of the form t2 + u2 are necessarily
contained in the formula y2+ z2, which is to say that every divisor of a number
equal to the sum of two squares is also the sum of two squares.

II.

Let a = 2, so q is not >
√

2
3 ; thus q = 0 and pr = 2, so p = 1 and r = 2.

Therefore the divisors of the numbers of the form t2 + 2u2 are contained
in the formula y2 + 2z2, which is to say that every divisor of a number equal
to the sum of a square and a doubled square is also the sum of a square and a
doubled square.

III.

Let a = 3, so q is not >
√

3
3 = 1; thus q = 0 or = 1. Making q = 0, we will

have pr = 3, so p = 1 and r = 3. Next making q = 1, we have pr = 3+1 = 4.
Thus, since neither p nor r can be < 2q, we must have p = 2 and r = 2.

Therefore the divisors of the numbers of the form t2+3u2 will be contained
in the two formulas y2+3z2 and 2y2±2yz+2z2. As the second of these formulas
can only produce even numbers, all terms being divisible by 2, it follows that
every odd divisor of t2+3u2 will be contained necessarily in the formula y2+3z2.
In other words, every odd divisor of a number which is the sum of a square and
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a tripled square, which are relatively prime, is also the sum of a square and a
tripled square.

For the rest, as it suffices to consider the odd divisors, in what follows we
shall always disregard those formulas which could admit only even divisors; this
is why we will reject all the values of p and q that are both even.

IV.

Let a = 4, so q is not >
√

4
3 ; thus q = 0 or = 1. Making q = 0, we have

pr = 4, so p = 1 and r = 4 (and we reject the values p = 2 and r = 2 because
they are both even). Making q = 1, we have pr = 5; thus p = 1 and r = 5,
which must be rejected since p will be < 2q.

Therefore the odd divisors of the numbers of the form t2 + 4u2 will also be
of the form y2 + 4z2.

V.

Let a = 5, so q is not >
√

5
3 ; thus q = 0 or = 1. Making q = 0, we have

pr = 5, so p = 1 and r = 5. Making q = 1, we have pr = 6; thus p = 2 and
r = 3.

Therefore the divisors of the numbers of the form t2 + 5u2 are necessarily
of one or the other of these two forms: y2 + 5z2 or 2y2 ± 2yz + 3z2. So these
divisors themselves or their doubles are always of the form t2 +5u2 (see Article
17).

VI.

Let a = 6, so q is not >
√

6
3 ; thus q = 0 or = 1. Making q = 0, we will

have pr = 6, so either p = 1 and r = 6 or p = 2 and r = 3. Making q = 1, we
will have pr = 7; thus p = 1 and r = 7, which must be rejected since p will be
< 2q.

Therefore the divisors of the numbers of the form t2 +6u2 will have one or
the other of the forms y2+6z2 and 2y2+3z2, so that these divisors themselves
or their doubles will be of the form t2 + 6u2.

VII.

Let a = 7, so q is not >
√

7
3 ; thus q = 0 or = 1. Making q = 0 we will

have pr = 7, so p = 1 and r = 7. Making q = 1, we will have pr = 8; thus
p = 2 and r = 4, which can only produce even divisors.

Therefore the odd divisors of the numbers of the form t2 + 7u2 will also be
necessarily of the form y2 + 7z2.

13
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VIII.

Let a = 8, so q is not >
√

8
3 ; thus q = 0 or = 1. Making q = 0 we will

have pr = 8, so p = 1 and r = 8. We will reject the values p = 2, r = 4 as
they may belong only to even divisors. Next, making q = 1 we will have pr = 9;
thus p = 3 and r = 3.

Therefore the divisors of the numbers of the form t2 + 8u2 are of the one
or the other of the forms y2 + 8z2 or 3y2 ± 2yz + 3z2, so that these divisors
themselves, or their triples, will be always of the same form t2 + 8u2.

IX.

Let a = 9, so q is not >
√

9
3 ; thus q = 0 or = 1. Making q = 0, we will

have pr = 9; thus either p = 1 and r = 9 or p = 3 and r = 3. Making q = 1,
we will have pr = 10; thus p = 2 and r = 5.

Therefore the divisors of the numbers of the form t2 + 9u2 are necessarily
of one of the three forms y2 + 9z2, 3y2 + 3z2, 2y2 ± 2yz + 5z2; so that these
divisors themselves, or their doubles or their triples, will always be able to relate
to the same form t2 + 9u2.

X.

Let a = 10, so q is not >
√

10
3 ; thus q = 0 or = 1. Making q = 0 we will

have pr = 10; thus either p = 1 and r = 10, or p = 2 and r = 5. Making
q = 1, we will have pr = 11; thus p = 1 and r = 11, which is not possible
because then p would be < 2q.

Therefore the divisors of the numbers of the form t2 + 10u2 are always of
one of the forms y2 + 10z2 or 2y2 + 5z2, so that these divisors themselves or
their doubles will be necessarily of the same form t2 + 10u2.

XI.

Let a = 11, so q is not >
√

11
3 ; thus q = 0 or = 1. Making q = 0, we will

have pr = 11; thus p = 1 and r = 11. Making q = 1, we will have pr = 12;
thus p = 3 and r = 4; the values p = 2 and r = 6 are rejected because they
would only admit even divisors.

Therefore the divisors of the numbers of the form t2 = 11u2 aref of one
or the other of the forms y2 + 11z2 or 3y2 ± 2yz + 4z2; so that these divisors
themselves or their triples will be always of the same form t2 + 11u2.

fThis appears to be a typographical error in the Nouveaux Mémoires: the text should have
t2 + 11u2 here. The error was corrected in the Oeuvres de Lagrange.
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XII.

Let a = 12, so q is not >
√

12
3 = 2; thus q = 0, = 1, or = 2. Making

q = 0, we will have pr = 12; thus either p = 1 and r = 2g or p = 3 and r = 4,
rejecting the values p = 2 and r = 6, which would only admit even divisors.
Making q = 1, we will have pr = 13; thus p = 1 and r = 13, which must be
rejected because p will be < 2q. Making q = 2, we will have pr = 12+4 = 16;
thus p = 4 and r = 4 (because q = 2, p cannot be < 4) which must be rejected
if we only consider odd divisors.

Therefore the odd divisors of the numbers of the form t2 + 12u2 will be of
one or the other of the forms y2 + 12z2 or 3y2 + 4z2; so that these divisors
themselves or their triples will be of the same form t2 + 12u2.

We will not extend these this research any further, especially since the
examples which we just gave are more than sufficient to show the application of
our methods and to put on the path those who will want to use it to discover
new theorems on the form of the divisors of the numbers t2 + au2.

Remark.

19. These three initial Theorems have long been known by the Geometers,
and are due, I believe, to Mr. Fermat, though Mr. Euler is the first to prove
them. We can see the proofs of them in Volumes IV, VI, and VIII of the Novi
Commentarii of Petersburg.h His method is totally different from mine, and
anyway it is applicable only to the cases where the number a does not surpass
3; this is what may have prevented the great Geometer from further pursuing
his research on the subject.

Regarding the Theorems which he had already given before without proof
in Volume XIV of the old Commentarii, it is likely that he only found them by
induction, especially since he made no mention of them in the cited volumes of
the Novi Commentarii, where even he noted that his proofs could not extend to
numbers other than those of the form t2 + u2, t2 + 2u2, and t2 + 3u2 (Volume
VI, p. 214).i

gAnother typographical error in the Nouveaux Mémoires: the text should have p = 1 and
r = 12 here. The error also appears in the Oeuvres de Lagrange.

hThis likely refers to the following articles by Leonhard Euler: “De numeris, qui sunt
aggregata duorum quadratorum” (E228, Vol. 4); “Solutio generalis quorundam problematum
Diophanteorum, quae vulgo nonnisi solutiones speciales admittere videntur” and “Specimen
de usu observationum in mathesi pura” (E255-256, Vol. 6); “Theoremata arithmetica nova
methodo demonstrata” and “Supplementum quorundam theorematum arithmeticorum, quae
in nonnullis demonstrationibus supponuntur” (E271-272, Vol. 8).

iThis refers to “Specimen de usu observationum in mathesi pura” (E256, Vol. 6).
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20. Theorems on the divisors of the numbers

t2 − au2 or au2 − t2,

t and u being relatively prime.

I.

Let a = 1, so q is not >
√

1
5 ; thus q = 0 and pr = 1, so p = 1 and r = 1.

Therefore the divisors of the numbers of the form t2 − u2 will be of the
form y2 − z2; consequently (Article 14) every number is reducible to the form
y2 − z2; this is what was done elsewhere.

II.

Let a = 2, so q is not >
√

2
5 ; thus q = 0 and pr = 2, so p = 1 and r = 2, so

that the forms of the divisors of t2−2u2 or 2u2− t2 will be y2−2z2 or 2z2−y2.
But note that these two forms amount to the same thing: making y = y′+2z′

and z = y′ + z′ (which gives y′ = 2z − y and z′ = y − z, so consequently y′

and z′ are whole numbers) the formula y2 − 2z2 becomes 2z2 − y2.
Therefore the divisors of the numbers of the form t2 − 2u2 or 2u2 − t2 are

necessarily of the one or the other of the forms y2 − 2z2 and 2z2 − y2.

III.

Let a = 3, so q is not >
√

3
5 ; thus q = 0 and pr = 3, so p = 1 and r = 3.

Therefore the divisors of the numbers of the form t2 − 3u2 or 3u2 − t2 are
of the one or the other of the forms y2 − 3z2 and 3z2 − y2.

IV.

Let a = 4, so q is not >
√

4
5 ; thus q = 0 and pr = 4, so either p = 1 and

r = 4, or p = 2 and r = 2.
Therefore, the divisors of the numbers of the form t2 − 4u2 or 4u2 − t2

will be necessarily contained in the formulas y2 − 4z2, 4z2 − y2, 2y2 − 2z2;
consequently (Article 14) any arbitrary number will have one of these forms.

For the rest we may ignore the forms which would only admit even divisors,
such as 2y2 − 2z2; so we reject in the following, as we have done up until now,
the values of p and r that are simultaneously even.

V.
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Let a = 5, so q is not >
√

5
5 = 1; thus q = 0 or = 1. Making q = 0, we

have pr = 5, thus p = 1 and r = 5. Making q = 1, we would have pr = 4, so
because p and r cannot be < 2q we can only do p = 2 and r = 2; but we reject
these values because they are always both even. So we have none other than
these two forms of divisors y2− 5z2 and 5z2− y2, which anyhow reduce to the
same thing, since we may agree that in making y = 2y′ + 5z′ and z = y′ + 2z′

(which gives z′ = y−2z and y′ = 5z−2y, and consequently y′ and z′ are whole
numbers) in the formula y2 − 5z2 which, by these substitutions, will become
5z′2 − y′2.

Therefore, the odd divisors of the numbers of the form t2− 5u2 or 5u2− t2
are in the two forms y2 − 5z2 and 5z2 − y2, respectively.

VI.

Let a = 6, so q is not >
√

6
5 ; thus q = 0 or = 1. Making q = 0, we will

have pr = 6, so either p = 1 and r = 6, or p = 2 and r = 3. Making next
q = 1, we will have pr = 5, which would only give p = 1 and r = 5, values
which are not admissible since p would be < 2q. So the formulas of the divisors
of the numbers of the form t2 − 6u2 or 6u2 − t2 will be y2 − 6z2, 6z2 − y2,
2y2 − 3z2, 3y2 − 2z2. But I observe that these last two reduce to the first two
by making 2y + 3z = y′, y + z = z′, which gives y = 3z′ − y′, z = y′ − 2z′,
and consequently 2y2 − 3z2 = 6z′2 − y′2, 3z2 − 2y2 = y′2 − 6z′2.

Therefore, the divisors of the numbers of the form t2− 6u2 or 6u2− t2 will
always also have one or the other of these forms.

VII.

Let a = 7, so q is not >
√

7
5 ; thus q = 0 or = 1. Making q = 0, we will

have pr = 7, so p = 1 and r = 7. Making q = 1, we will have pr = 6, thus
p = 2 and r = 3. So the formulas of the divisors of t2 − 7u2 will be y2 − 7z2,
2y2 ± 2yz − 7z2, and their opposites 7z2 − y2, 7z2 ± 2yz − 2y2. But I note
here that the first two of these formulas become the same thing, as well as the
last two; now making y = y′−2z′ and ±z = y′−3z′ (which gives y′ = 3y∓2z
and z′ = y ∓ z, which is to say that y′ and z′ are whole numbers) the formula
2y2 ± 2yz − 3z2 will become y′2 − yz′2, and the formula 3z2 ∓ 2yz − 2y2 will
become the same 7z′2 − y′2.

From this it follows that the divisors of the numbers of the form t2 − 7u2

or 7u2 − t2 also will be necessarily of the forms y2 − 7z2 or 7z2 − y2.

VIII.
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Let a = 8, so q is not >
√

8
5 ; thus q = 0 or = 1. Making q = 0, we will

have pr = 8, so either p = 1 and r = 8, or p = 2 and r = 4. But these last
values may be rejected because they are always both even. Making then q = 1,
we will have pr = 7, which would only give p = 1 and r = 7, values which are
not admissible since p would be < 2q.

Therefore, the odd divisors of the numbers of the form t2− 8u2 or 8u2− t2
will be of the one or the other of the two forms y2 − 8z2 or 8z2 − y2.

IX.

Let a = 9, so q is not >
√

9
5 ; thus q = 0 or = 1. Making q = 0, we will

have pr = 9, so either p = 1 and r = 9, or p = 3 and r = 3. Making q = 1,
we will have pr = 8, which, because p is not < 2q, will give p = 2 and r = 4,
values which we may reject because they are both even.

Therefore the odd divisors of the numbers of the form t2 − 9u2 or 9u2 − t2
will always be of one of the forms y2 − 9z2, 9z2 − y2, 3y2 − 3z2; consequently
(Article 14) any arbitrary odd number will be reducible to one of these forms.

X.

Let a = 10, so q is not >
√

10
5 =

√
2; thus q = 0 or = 1. Making q = 0,

we will have pr = 10, so either p = 1 and r = 10, or p = 2 and r = 5. Making
q = 1, we will have pr = 9, thus p = 3 and r = 3; so that the forms of the
divisors of t2 − 10t2 will be y2 − 10z2, 10z2 − y2, 2y2 − 5z2, 5z2 − 2y2, and
3y2 ± 2yz − 3z2. I remark first that this last formula may be reduced to these
two here, 2y′2−5z′2 and 5z′2−2y′2, by setting ±y = y′+z′ and z = y′+2z′, or
±y = y′+2z′ and z = y′+ z′, which always gives whole numbers for y′ and z′.
I remark next that the two forms y2− 10z2 and 10z2− y2 may also be reduced
to the same by making in the first y = 10z′ + 3y′ and z = 3z′ + y′, which will
transform it into 10z′2 − y′2; and as to the numbers y′ and z′ it is clear that
they will always be whole, since we will have z′ = y − 3z and y′ = 10z − 3y.

From this, I conclude that the divisors of the numbers of the form t2−10u2

or 10u2− t2 will always be of the one or the other of these two forms y2− 10z2

or 2y2 − 5z2, as well as these, 10z2 − y2 or 5z2 − 2y2.

XI.

Let a = 11, so q is not >
√

11
5 ; thus q = 0 or q = 1. Making q = 0, we will

have pr = 11, so p = 1 and r = 11. Making q = 1, we have pr = 10, so p = 2
and r = 5. So in this case, the forms of the divisors will be y2−11z2, 11y2−z2,
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2y2± 2yz− 5z2, 5z2± 2yz− 2y2. But I note that these last two formulas may
be reduced to the first two; so in making ±y = y′ + 4z′, z = y′ + 3z′ (which
gives z′ = ±y − z and y′ = 4z ∓ 3y, and consequently y′ and z′ are always
whole numbers) the formula 2y2 ± 2yz − 5z2 becomes 11z′2 − y′2, and the
formula 5z2 ∓ 2yz − 2y2 becomes the same y′2 − 11z′2.

From this it follows that the divisors of the numbers of the form t2 − 11u2

or 11u2 − t2 will always be of the one or the other of the forms y2 − 11z2 or
11z2 − y2.

XII.

Let a = 12, so q is not >
√

12
5 ; thus q = 0 or = 1. Making q = 0, we will

have pr = 12, so either p = 1 and r = 12, or p = 3 and r = 4, rejecting the
even values p = 2 and r = 6. Next making q = 1, we would have pr = 11,
thus p = 1 and r = 11, values which are not admissible because p would be
< 2q. So we will have none other than the formulas y2 = 12z2,j 12z2 − y2,
3y2 − 4z2, 4z2 − 3y2, for which I remark that these last two are reducible to
the first two, by making y = 4y′ + z′ and z = 3y′ + z′, which gives y′ = y − z
and z′ = 4z − 3y, and consequently y′ and z′ are whole numbers.

From this we may conclude that the odd divisors of the numbers of the form
t2 − 12u2 or 12u2 − t2 will always be of the one or the other of the two forms
y2 − 12z2 or 12z2 − y2, as well as these two, 3y2 − 4z2 or 4z2 − 3y2.

Remark.

21. Such is the method that one must follow in order to find the formulas
for divisors of the numbers of the form t2− au2 or au2− t2, giving a any value
beyond 12. This method is, as we see, very easy and simple to use, but it
seems subject to a kind of inconvenience: it sometimes gives more formulas
than necessary to represent all the divisors of the numbers of the given form,
so that some of these formulas turn out to be the same, as we have seen in the
preceding examples. To remedy this, it would be necessary to have a general rule
by which we could easily recognize the formulas which are mutually identical;
this is what we shall consider with all the generality that the matter can permit.
Since it has not been proven up until now that this equivalence of formulask

cannot occur among the divisors of the numbers of the form t2 − au2, though
the different cases of Article 18 provide no example, so as not to leave anything
to be desired on this subject, we shall also consider the formulas of both types.

jThis is a typographical error; should have y2 + 12z2 instead.
kLiterally, “identity of formulas.”
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Problem III.

22. Given the formula

py2 + 2qyz + rz2,

in which y and z are variables and p, q, r are positive or negative numbers,
subject to the conditions that pr − q2 = a (a being a given positive number)
and 2a is neither > p nor > r, disregarding the signs of p, q, and r; to find if
this formula may be transformed into another of the same type, which is subject
to the same conditions.

Since the transformation must be analogous to the proposed formula it is
evident that we cannot employ substitutions other than these:

y = Ms+Nx, z = ms+ nx,

s and x being two new variables, and M , N , m, and n arbitrary numbers.
Indeed, these substitutions give a transformation of the form

Ps2 + 2Qsx+Rx2,

where

P = pM2 + 2qMm+ rm2,

Q = pMN + q(Mn+Nm) + rmn,

R = pN2 + 2qNn+ rn2,

and it will only remain to see if we may determine the numbers M , N , m, and
n for which PR−Q2 = a, and for which 2Q is neither > P nor > R.

To satisfy the first condition, I substitute the values of P , Q, and R into the
quantity PR−Q2, and I cancel termsl to obtain PR−Q2 = (pr − q2)(Mn−
Nm)2. But pr − q2 = a (by hypothesis), so for PR − Q2 to also be = a we
must have (Mn−Nm)2 = 1; consequently, Mn−Nm = ±1.

With regard to the second condition, it is clear that it cannot happen unless
Q is simultaneously < P and < R; so we suppose that Q is indeed < P and
< R, and we will see what must follow.

Let M be greater than N (the reasoning being the same if N were greater
than M , merely taking N in place of M); it is clear that we may make

M = µN +M ′,

lLiterally, “by erasing what is destroyed”.
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and that we may take µ so that M ′ is less than N , since we need only take
for µ the quotient of the division of M by N , and M ′ will be the remainder.
Furthermore, it is easy to see that we may always suppose that µ is not less
than 2; so if we found µ = 1 such that M = N +M ′, we could make M =
2N − (N −M ′), which is to say take µ = 2 and N −M ′ in place of M ′. But
if we suppose also—which is permitted—that

m = µn+m′,

m′ being any number, and that we substitute these values of M and m into
the expression for Q, it will become

Q = µ(pN2 + 2qNn+ rn2) + pM ′N + q(M ′n+Nm′) + rm′n,

or by making the abbreviation

Q′ = pM ′N + q(M ′n+Nm′) + rm′n

we will have
Q = µR+Q′.

It must be that Q < R; since µ ≥ 2, it is clear that this condition cannot
happen unless the two quantities µR and Q′ have different signs and at the
same time Q′ is greater than R, disregarding the signs here.

Now we will have y = (µN +M ′)s + Nx and z = (µn +m′)s + nx; so
that if we set

x′ = µs+ x

we will have
y = M ′s+Nx′, z = m′s+ nx′,

and the substitution of these values into the formula py2 +2qyz+ rz2 will give
the new transformed

P ′s2 + 2Q′sx′ +Rx′2,

with

P ′ = pM ′2 + 2qM ′m′,

Q′ = pM ′N + q(M ′nNm′) + rm′n,

R = pN2 + 2qNn+ rn2,

as done above.
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Because Mn−Nm = ±1 we will have (µN +M ′)n−N(µn+m′) = ±1,
and consequently

M ′n−Nm′ = ±1.

We will also find that P ′R−Q′2 = (pr−q2)×(M ′n−Nm′)2, and consequently

P ′R−Q′2 = a.

So then, since a is positive and Q′ > R, it must be that P ′ < Q′; so the
preceding transformed expression will be such that R < Q′ < P ′.

In the same fashion, because N > M ′ we may suppose

N = µ′M ′ +N ′,

and take µ′ to be not < 2, and N ′ < M ′, and then make

n = µ′m′ + n′,

s′ = µ′x′ + s,

so that we have

y = M ′s′ +N ′x′, z = m′s′ = n′x′.

We will obtain, using similar operations and reasoning as before, this new trans-
formed

P ′s′2 + 2Q′′s′x′ +R′x′2,

from which we will have

P ′ = pM ′2 + 2qM ′m′ + rm′2,

Q′′ = pM ′N ′ + q(M ′n′ +N ′m′) + rm′n′,

R′ = pN ′2 + 2qN ′n′ + rn′2,

and where we will also have

M ′n′ −N ′m′ = ±1,
Q′ = µ′P ′ +Q′,

P ′R′ −Q′′2 = a,

so that Q′′ will be > P ′ and < R′, disregarding the signs of P , R′, and Q′′.
We can also find a third transformation, such as

P ′′s′2 + 2Q′′′s′x′′ +R′x′′2,
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which will be subject to the same conditions of the preceding transformations,
and so on.

I now consider that, as the numbers M , N , M ′, N ′, etc. form (disregarding
their signs) a decreasing sequence, we will necessarily arrive at a term which will
be = 0. Suppose that N ′ is this term, so that we have N ′ = 0; then because
M ′n′ − N ′m′ = ±1 we will have M ′n′ = ±1; thus M ′ = ±1 and n′ = ±1,
therefore

P ′ = p± 2qm′ + rm′2,

Q′′ = ±q ± rm′,
R′ = r,

the ± signs being arbitrary.
It must be 1◦ that we have Q′′ < R′, disregarding the signs of these num-

bers. But R′ = r and q < r, because 2q is not > r (by hypothesis); thus Q′′

cannot be < R′ < r unless m′ is = 0 or = ±1. 2◦. It must be that Q′′ is at the
same time > P ′; but if m′ = 0 we have Q′′ = ±q and P ′ = p, so that because
2q is not > p (by hypothesis), Q′′ will always be < P ′ instead of being greater.
If m′ = ±1 we will have P ′ = p ± 2q + r, and Q′′ = q ± r. But we suppose
that Q′′ will be < r; thus, for Q′′ to be > P ′ it would be necessary for r to
be > p ± 2q + r, which cannot happen because 2q is never > p, and besides,
p and r must have the same signs by virtue of the equation pr − q2 equaling a
positive number.

From this I conclude that it is impossible for the proposed formula to be
transformed into another where the stated conditions take place; so that if
we have several formulas where the same conditions are observed, we may be
assured that the formulas are essentially different from each other, and that
they cannot be reduced to an even smaller number.

Problem IV.

23. Given the formula

py2 + 2qyz − rz2,

in which y and z are variables and p, q, r are positive or negative numbers
determined by these conditions: that pr+ q2 = a (a, a given positive number),
and that 2q is neither > p nor > r, disregarding the signs of p, q, and r; to
find if this formula can be transformed into another similar one, where the same
conditions are observed.
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Proceeding as in the previous Problem, and for the same reason,

y = Ms+Nx, z = ms+ nx,

we will have the transformed

Ps2 + 2Qsx−Rx2,

where

P = pM2 + 2qMm− rm2,

Q = pMN + q(Mn+Nm)− rmn,
R = rn2 − 2qNn− pN2,

so the difficulty consists in determining, if possible, the numbers M , N , m, and
n for which we have PR+Q2 = a, and at the same time neither P nor R being
< 2Q, disregarding the signs of P , Q, and R.

I note first that, by putting in place of P , Q, and R their respective values,
the quantity PR+Q2 becomes (pr+q2)(Mn−Nm)2 = a(Mn−Nm)2; so as
in the preceding Problem, we must have (Mn−Nm)2 = 1, and consequently

Mn−Nm = ±1.

Since M , N , m, and n are assumed to be whole numbers, it is clear that this
equation cannot exist unless the products Mn and Nm do not have the same
signs; so then if M and N have the same signs, it must be that m and n do as
well.

Since we may give variables s and x any sign we want, it is evident that we
may, without harming the generality of the Problem, always take the numbers
M and N to be positive; and then it must be that the numbers m and n have
the same sign, which is to say both are positive, or both are negative. Then it
will only be necessary to put ±m and ±n in place of m and n, or, what amounts
to the same thing, we need only give the ambiguous sign ± to the quantity q,
that is to say, to take the value of this quantity in plus and in minus; through
this we may regard the four numbers M , N , m, and n as positive.

Now it is clear that if 2Q is neither > P nor > R, as we have supposed,
Q2 will always be less than PR, so that PR+Q2 cannot be equal to a positive
number unless PR is a positive number. From this it follows that it is necessary
for P and R to have the same sign; and this condition suffices, as we will see,
to find the numbers M , N , m, n.
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To show this, I observe that because pr + q2 = a, the quantity P can be
put in this form

P = p

(
M +

q +
√
a

p
m

)(
M +

q −
√
a

p
m

)
,

and the quantity R in this one

R = −p
(
N +

q +
√
a

p
n

)(
N +

q −
√
a

p
n

)
.

Since
√
a is greater than q, it is clear that the quantity q +

√
a will always be

positive, and the quantity q −
√
a always negative; so that the two quantities

q+
√
a

p and q−
√
a

p will necessarily have different signs. Then letting α be that of
the two quantities which is positive and −β the one which is negative (α and
β denoting positive numbers), we will have

P = p(M + αm)(M − βm),

R = −p(N + αn)(N − βn).

From this we see that for the numbers P and R to have the same sign it must
be that the factors M − βm and N − βn must have different signs, because
the factors M + αm and N + αn are both positive.

That said, let M > N ; we may make M = µN+M ′ and take for µ a positive
whole number for which M ′ will be positive and less than N ; because for that we
need only divide M by N and make the quotient equal to µ and the remainder
equal to M ′. Let us do the same with m = µn + m′, m′ being an arbitrary
number; and substituting these values into the equation Mn−Nm = ±1, we
will have this

M ′n−Nm′ = ±1,

where we see that because M ′, N , and n are positive, it must be that m′ is
also a positive number.

The values of y and of z will become by the same substitutions

y = (µs+ x)N +M ′s, z = (µs+ x)n+m′s,

or, by doing as above,

x′ = µs+ x,

y = M ′s+Nx′,

z = m′s+ nx′,
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and these values being substituted into the formula py2 + 2qyz − rz2, we will
have the transformed

P ′s2 + 2Q′sx′ −Rx′2

where

P ′ = pM ′2 + 2qM ′m′ − rm′2,
Q′ = pM ′N + q(M ′n+Nm′)− rm′n,
R = rn2 − qNn− pN2.

And I say that the numbers P ′ and R will necessarily have the same signs; we
will have

P ′ = p(M ′ + αm′)(M ′ − βm′),
R = −p(N + αn)(N − βn);

so M − βm = µ(N − βn) +M ′ − βm′. Thus, since µ is a positive number,
and since M − βm and N − βn have different signs, for this equation to exist
it must be that the quantities M − βm and M ′ − βm′ have the same signs;
and consequently N − βn and M ′ − βm′ have different signs. But N + αn
and M ′+αm′ are positive quantities, N , n, m′, and α being positive numbers;
thus the two numbers P ′ and R necessarily have the same sign.

Similarly, since N > M ′, we may suppose N = µ′M ′ + N ′ and take µ′

positive so that N ′ is also positive and less than M ′; and making n = µ′m′+n′

we will have (substituting these values into the equation M ′n−Nm′ = ±1)

M ′n′ −N ′m′ = ±1,

so that m′ will also be necessarily positive.
Next, if we make

s′ = µ′x′ + s,

we will have
y = M ′s′ +N ′x′, z = m′s′ + n′x′,

and substituting these values into the formula py2 + 2qyz − rz2, we will have
this other transformed

P ′s′2 + 2Q′′s′x′ −R′x′2,

where

P ′ = pM ′2 + 2qM ′m′ − rm′2,
Q′′ = pM ′N ′ + q(M ′n′ +N ′m′)− rm′n′,
R′ = rn′2 − qN ′n′ − pN ′2.
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And we will prove, as we have done so far, that the numbers P ′ and R′ will
have the same signs.

Similarly, we can find a third transformation such that

P ′′s′2 + 2Q′′′s′x′′ −R′x′′2,

in which
x′′ = µ′′s′ + x′,

and where P ′′ and R′ will have the same signs, and so on.
Now, since the numbers M , N , M ′, N ′ etc. form a decreasing sequence of

whole numbers, it is clear that we must necessarily reach a term which is zero.
Suppose then, for example, that we have N ′ = 0, and because M ′n′−N ′m′ =
±1, we will have M ′n′ = 1 (and because the numbers M ′ and n′ are both
positive, it is evident that we must take the positive sign in this case), thus
M ′ = 1 and n′ = 1; so that we will have in this case y = s′, z = m′s′ + x′.

Therefore I conclude that, to transform the proposed formula

py2 + 2qyz − rz2

into this one,
Ps2 + 2Qsx−Rx2,

in which we have PR+Q2 = pr+ q2 = a, and where P and R have the same
signs, we must do the following substitutions

z = m′y + x′,

y = µ′x′ + s,

x = µs+ x,

and take the numbers m′, µ′, and µ to be positive, and in such a way that in
the resulting transformations

P ′y2 + 2Q′′yx′ −R′x′2,
P ′s2 + 2Q′sx′ −Rx′2,
Ps2 + 2Qsx−Rx2,

the coefficients R′, P ′, R, and P have the same signs.
Let us see how we can fulfill these conditions.
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First doing the substitution of m′y + x in place of z, we will have the first
transformed expression, where

R′ = r,

Q′′ = q − rm′,

P ′ = p+ 2qm′ − rm′2 =
a−Q′′2

R′
.

Now, P ′ = −r
(
m′ +

√
a−q
r

)(
m′ −

√
a+q
r

)
. Thus, in order for P ′ and R′ to

have the same signs, the factors m′+
√
a−q
r and m′−

√
a+q
r must have different

signs, but because
√
a > q, it is clear that

√
a ± q will always be a positive

number; thus, if r is positive, m′ +
√
a−q
r will always be positive, and it must

be that m′ −
√
a+q
r is negative, and consequently that m′ <

√
a+q
r . If, to the

contrary, r is negative, m′−
√
a+q
r will be positive and it must be that m′+

√
a−q
r

is negative; thus, m′ <
√
a−q
−r .

Next substitute µ′x′+s in place of y and we will have the second transformed
expression in which

Q′ = Q′′ + P ′µ′

R = R′ − 2Q′′µ′ − P ′µ′2 =
a−Q′2

P ′
.

I observe that R = −P ′
(
µ′ +

√
a+Q′′

P ′

)(
µ′ −

√
a−Q′′

P ′

)
, so that for R and P ′ to

have the same signs it must be that the two factors µ′+
√
a+Q′′

P ′ and µ′−
√
a−Q′′

P ′

have different signs. So since P ′R′ = a − Q′′2 (P ′ and R′ having the same
signs) it follows that Q′′2 < a, and consequently Q′′ <

√
a, so that

√
a ± Q′′

will always be a positive number. Thus, if P ′ is positive, µ′ +
√
a+Q′′

P ′ will be

positive, and it must be that µ′−
√
a−Q′′

P ′ is negative, so µ′ <
√
a−Q′′

P ′ . But for µ′

to be a whole number it must be that
√
a−Q′′

P ′ > 1, so P ′ <
√
a−Q′′. Therefore,

because P ′R′ = a−Q′′2 = (
√
a+Q′′)(

√
a−Q′′), it must be that R′ >

√
a+Q′′,

which is to say r >
√
a+ q − rm′; and consequently (m′ + 1)r >

√
a+ q and

then m′ >
√
a+q
r − 1. So P ′ must be positive when r is positive, in which case

we have already found m′ <
√
a+q
r ; therefore we will have in this case

m′ <

√
a+ q

r
and >

√
a+ q

r
− 1,

µ′ <

√
a−Q′′

P ′
.
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We will find the same for the case when r is negative

m′ <

√
a− q
−r

and >

√
a− q
−r

− 1,

µ′ <

√
a+Q′′

P ′
.

From this we see that the number m′, needing to be whole, will be necessarily
determined, since the two limits between which it must be found only differ by
a unit.

Finally we will substitute µs + x in place of x′, and we will have the third
transformed expression in which

Q = Q′ −Rµ,

R = P ′ + 2Q′µ−Rµ2 =
a−Q2

R
.

And noting that P = −R
(
µ+

√
a−Q′

R

)(
µ−

√
a+Q′

R

)
(because RP ′ = a−Q′2)

we will prove, as above, that in the case where r is positive, we will have

µ′ <

√
a−Q′′

P ′
and >

√
a−Q′′

P ′
− 1,

µ <

√
a+Q′

R
,

and in the case where r is negative,

µ′ <

√
a+Q′′

P ′
and >

√
a+Q′′

P ′
− 1,

µ <

√
a−Q′

R
.

So then the number µ′ will also be determined, and the only indeterminate
number will be µ.

If we want further that 2Q is neither > P nor > R, as in the conditions
of the required Problem, we must first determine µ so that Q = Q′ − µR is
not > R

2 , disregarding the signs of Q and R; and it is clear that, taking µ to
be a positive whole number, there is not a single value of µ which can satisfy
this condition. So then the number µ will be completely determined by this
method. It only remains to see if Q is also < P

2 , in which case the transformed
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Ps2 + 2Qsx−Rx2 will have the required conditions.

From there, we see how the proposed question may be answered without
fumbling around; and here is the method which must be followed to this end.

24. Method to transform the formula

py2 + 2qyz − rz2,

in which we have pr + q2 = a (a, a given, positive whole number) and where
2q is neither > p nor > r (disregarding the signs of p, q, r), into other similar
formulas and subject to the same conditions.

To better preserve the analogy in our formulas, we first change the letters
z and p to y′ and r′, so that our formula will become

r′y2 + 2qyy′ − ry′2,

where rr′ + q2 = a, and q is neither > r
2 nor > r′

2 .

Since r and r′ must have the same signs by virtue of the equation r′r+q2 =
a, we will suppose first that they are both positive; but q will have to be taken
successively as positive and negative.

That said, we will have

1◦. y = m′y′ + y′′, which will give this first transformed expression

r′y′′2 + 2q′y′′y′ − r′′y′2,

where we will have

q′ = q + r′m′,

r′′ = r − 2qm′ − r′m′2 =
a− q′2

r′
.

We will take m′, if possible, to be a positive whole number, so that q+ r′m′ is
not > r′

2 ; then we will see if r′′ > q′ or not; and in this last case the transformed
expression thus found will have the required conditions.

2◦. We will determine m′ so that

m′ <

√
a− q
r′

and >

√
a− q
r′

− 1.
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Next we will take
y′ = m′′y′′ + y′′′,

which will give this second transformed expression

r′′′y′′2 + 2q′′y′′y′′′ − r′′y′′′2,

by making

q′′ = q′ − r′′m′′,

r′′′ = r′ + 2q′m′′ − r′′m′′2 = a− q′′2

r′′
.

We will take m′′ to be a positive whole number for which q′ − r′′m′′ is not
> r′′

2 ; and if at the same time q′′ does not exceed r′′′

2 the preceding transformed
expression will meet the required conditions.

3◦. We will determine m′′ so that

m′′ <

√
a+ q′

r′′
and >

√
a+ q′

r′′
− .m

Next we will take
y′′ = m′′′y′′′ + yIV,

and we will have this third transformed

r′′′yIV2 + 2q′′′yIVy′′′ − rIVy′′′2,

in which

q′′′ = q′′ + r′′′m′′′,

rIV = r′′ − 2q′′m′′′ − r′′′m′′′2 =
a− q′′

r′′′
.

We will take for m′′′ a positive whole number such that q′′+r′′′m′′′ is not > r′′′

2 ,

and if the value of q′′′ is not simultaneously > rIV

2 , we will be assured that the
transformed expression thus found will have the required conditions.

4◦. We will determine m′′′ so that

m′′′ <

√
a− q′′

r′′′
and >

√
a− q′′

r′′′
− 1.

mIn the Nouveaux Mémoires, the numeral ‘1’ is missing from the end of this equation. The
error is corrected in the Oeuvres de Lagrange.
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Next we will take
y′′′ = mIVyIV + yV,

which will give the fourth transformed

rVyIV2 + 2qIVyIVyV − rIVyV2,

where

qIV = q′′′ + rIVmIV,

rV = r′′′ − 2q′′′mIV − rIVmIV2 =
a− qIV2

rIV
.

We will take mIV so that q′′′− rIVmIV is not > rIV

2 , and if qIV is not simultane-

ously > rV

2 the transformed will have the required conditions.

5◦. One may determine mIV, etc.

In this fashion we will find successively all the transformations of the pro-
posed formula in which the prescribed conditions can hold, and it is clear that
the number of different transformations will be necessarily limited. We have
seen in Prob. II that we can only have a limited number of different formulas
where the same conditions are observed.

But to get all the possible different transformations of the same formula, it
will be necessary to do a double calculation, taking the value of q successively
as positive and negative.

If the numbers r and r′, instead of being two positive numbers, as we have
supposed, are two negatives, it would only be necessary to change the signs of
these numbers as well as the number q, which is to say that we would take the
formula r′y2+2qyy′−r′y2 to be negative; and then we would at the same time
change all the signs of the transformed expressions that we would have found.
Or, which is even simpler, we will write −r in place of r′, −r′ in place of r, and
y′ in place of y, which will give the formula −ry′2 + 2qyy′ + r′y2 where r and
r′ will be positive numbers.

Corollary.

25. It follows from the analysis of the preceding Problem that the numbers
r, r′, r′′, r′′′, etc. will all have the same signs and satisfy rr′ + q2 = a =
r′r′′ + q′2 = r′′r′′′ + q′′2 = etc., so each of these numbers will be less than the
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given number a. Consequently, in continuing the series r, r′, r′′ etc. it will be
necessary that the same number repeats several times and even that the same
pair of successive numbers also repeats. Thus, in continuing the calculation,
following the preceding method, we will necessarily recover a transformed ex-
pression identical to one of those which we already had. It is this which we will
recognize easily when we will find, for example, qµ+ν = qµ and rµ+ν+1 = rµ+1,
and that ν will be an even number; so it will be useless to pursue the calculation
any further, because the subsequent transformations will be the same as those
which we have already found.

Therefore, as soon as we have found from Problem II all the different for-
mulas py2± 2qyz− rz2 which may represent the divisors of the numbers of the
form t2 − au2, we may reduce them to the smallest possible number, excluding
those which are not the transformation of some one of these formulas. So,
since the formula y2 − az2 is always one of the divisors of t2 − au2 (by making
q = 0 and p = 1, r = a) we will begin by searching all the transformations
of this same formula, where the prescribed properties will occur, and as these
transformations are found necessarily among the other formulas of the divisors
of t2−au2 we may first reject those which are identical among themselves. Next
we will do the same operation on the formulas which remain; and after those
have all been covered, rejecting those which are found to be identical among
themselves, we will be sure that all those remaining will be distinct, and at the
same time necessary to represent all the possible divisors of the numbers of the
given form.

For the rest, it will happen most often that the transformations of the for-
mula y2 − az2 will contain all the other formulas of the divisors of t2 − au2,
especially when a is a prime number. But it would be a mistake to make a
general rule; so we will give examples of where it fails, which will serve simulta-
neously to show the utility and importance of the methods which we have just
given.

Examples.

26. Let us propose the formula y2 − 2z2, so r′ = 1, q = 0, r = 2 = a.

Thus we will have q′ = m′, r′′ = 2−q′2
1 , so it is clear that we cannot make

q′ < r′ < 1; consequently we will pass to a second transformed expression.

For that we will thus take m′ <
√
2
1 y and >

√
2
1 −1, which is to say m′ = 1,

which will give q′ = 1, r′′ = 2−1
1 = 1. Next we will have q′′ = q′ − r′′m′′ =
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1 −m′′ and 2−q′′2
1 ; so, for q′′ to not be > r′′

2 > 1
2 , it must be that m′′ = 1,

which gives q′′ = 0 and r′′′ = 2; so that as q′′ is at the same time not r′′

2 we will
have the transformed r′′′y′′2 + 2q′′y′′y′′′ − r′′y′′′2, which is to say 2y′′2 − y′′′2,
which will have the required conditions. This transformed expression is similar
to the formula 2z2− y2, so that the two formulas y2− 2z2 and 2z2− y2, which
our general method gives for the divisors of the numbers of the form t2 − 2u2,
amount to the same thing, as we have already remarked (Article 20, No. II).

Likewise, we will find that the two formulas y2 − 5z2 and 5z2 − y2 amount
to the same thing, as we observed it in the Article cited (No. V).

To give another example, consider the case of No. VII of the same Article,
where we found that the formulas of the divisors of t2 − 7u2 were y2 − 7z2,
2y2 ± 2yz − 3z2, 7z2 − y2, and 3z2 ± 2yz − 2y2.

So let 1◦. r′ = 1, q = 0, and r = 7 = a; we will have q′ = m′ and

r′′ = 7−q′2
1 , from which we see that q′ cannot be < r′

2 <
1
2 .

We will then take 2◦. m′ <
√
7
1 and >

√
7
1 − 1, so m′ = 2 and q′ = 2

and r′′ = 3; from here we will have q′′ = 2 − 3m′′, r′′′ = 7−q′′2
3 , and since

q′′ is not > r′′

2 > 3
2 it must be that m′′ = 1, which will give q′′ = −1 and

r′′′ = 2. So since q′′ is at the same time not > r′′′

2 , the transformed expression
is r′′′y′′2 + 2q′′y′′y′′′ − r′′y′′′2, which is to say that 2y′′2 − 2y′′y′′′ − 3y′′′2 will
have the required conditions.

We will take 3◦. m′′ <
√
7+2
3 and >

√
7+2
3 − 1, so m′′ = 1; from which

q′′ = −1 and r′′′ = 2. Then we will have q′′′ = −1 + 2m′′′ and rIV = 7−q′′′2
2 ;

thus for q′′′ to not be > r′′′

2 we must take m′′′ = 1. This will give q′′′ = 1 and
rIV = 3; from that we will have the new transformed 2yIV2 + 2yIVy′′′ − 3y′′′2,
which will also have the required conditions.

We will do 4◦. m′′′ <
√
7+1
2 and >

√
7+1
2 − 1; thus m′′′ = 1, from which

q′′′ = 1, rIV = 3. Next we will have qIV = 1− 3mIV and rV = 7−qIV2

3 , where we

see that we cannot take mIV so that qIV does not become > rIV

2 .

We will do 5◦. mIV <
√
7+1
3 and >

√
7+1
3 − 1; thus mIV = 1, and from here

qIV = −2 and rV = 1. Next we will have qV = −2+mV, rVI = 7−qV2

1 ; thus for

qV to not be > rV

2 we will do mV = 2, which will give qV = 0 and rVI = 7; so
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that we will have the transformed yVI2 − 7yV2, which will have the prescribed
conditions.

We will do 6◦. mV <
√
7+2
1 and >

√
7+2
1 − 1; thus mV = 4, consequently

qV = 2 and rVI = 3. Here I observe, without going further, that these values
of qV and rVI are the same as q′ and r′′ (No. 2); thus, since the difference of
the exponents of q is even, it follows that the transformed expressions which we
could find by continuing the calculation would be the same as those which we
have already found above (Article 25).

So the formula y2 − 7y′2 cannot furnish other transformations which have
these two prescribed conditions: 2y′′′2 − 2y′′′y′′′ − 3y′′′2 and 2yIV2 + 2yIVy′′′ −
3y′′′2.n From this we see that the formulas y2−7z2 and 2y2±2yz−3z2 amount
to the same thing, since the formulas 7z2−y2 and 3z2∓2yz−2y2 are only the
negatives of those. But the two formulas y2 − 7z2 and 7z2 − y2 cannot reduce
from the one to the other, as took place for the formulas y2− 5z2 and 5z2− y2
from the preceding example.

27. To further develop the application of our methods from Problems II and
IV, we will seek here the formulas of the divisors of the numbers of the form
t2 − 79u2 or 79u2 − t2.

Here we will thus have a = 79; so it must be that q is not >
√

79
3 > 3, so

that we may only do q = 0, 1, 2, 3. Making q = 0 we will have pr = 79, so
p = 1 and r = 79. Making q = 1 we will have pr = 78, so either p = 2 and
r = 39, or p = 3 and r = 26, or p = 6 and r = 13. Making q = 2 we will have
pr = 75, so p = 5 and r = 15. Lastly making q = 3, we will have pr = 70, so
p = 7 and r = 10.

So for the divisors in question, we will have the following formulas, y2−79z2,
2y2 ± 2yz − 39z2, 3y2 ± 2yz − 26z2, 6y2 ± 2yz − 13z2, 5y2 ± 4yz − 15z2,
7y2±6yz−10z2, and their inverses 79y2−z2, 39z2∓2yz−2y2, 26z2∓2yz−3y2,
13z2∓2yz−6y2, 15z2∓4yz−5y2, 10z2∓6yz−7y2, which makes 12 formulas
in total. But we must now sort them, and reject those which are identical to
one another.

Consider first the formula y2 − 79z2, or y2 − 79y′2, and we will have 1◦.

nThe first of these appears to be a typographical error; should have 2y′′′2− 2y′′′y′′− 3y′′2

instead.
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r′ = 1, q = 0, and r = 79 = a, so q′ = m′ and r′′ = 79−q′2
1 . Now q′ is always

> r′

2 , unless we make m′ = 0, which would give no new formula.

So we will do 2◦. m′ <
√
79
1 and >

√
79
1 − 1, thus m′ = 8, consequently

q′ = 8 and r′′ = 15. Next we will have q′′ = 8 − 15m′′, r′′′ = 79−q′′2
15 , from

which we will do m′′ = 1 so that q′′ is not > r′′

2 . We will thus have q′′ = −7
and r′′′ = 2; but since q′′ would be > r′′′

2 these values give no suitable trans-
formation.

Thus we will do 3◦. m′′ <
√
79+8
15 and >

√
79+8
15 − 1; so m′′ = 1 and from

that q′′ = −7, r′′ = 2; then we will have q′′′ = −7 + 2m′′′ and rIV = 79−q′′′2
2 .

We take m′′′ = 3 or = 4 so that q′′′ = ±1 is not > r′′′

2 , and rIV will become
= 39; so we will have this transformed expression, which will have all the pre-
scribed conditions: 2yIV2 ± 2yIVy′′′ − 39y′′′2.

Continuing the calculation we will do 4◦. m′′′ <
√
79+7
2 and >

√
79+7
2 − 1,

which is to say m′′′ = 7; from which q′′′ = 7 and rIV = 15. Next, we will do

qIV = 7− 15mIV and rV = 79−qIV2

15 ; and we will take mIV = 1 so that qIV is not

> rIV

2 . So we will have qIV = −8 and rV = 1; but since qIV > rV

2 we will reject
these values as useless.

We will then do 5◦. mIV <
√
79+7
15 and

√
79+7
15 − 1, so mIV = 1, conse-

quently qIV = −8, rV = 1. Subsequently we will suppose qV = −8 +mV and

rVI = 79−qV2

1 , and we will take mV = 8 so that qV = 0 and rVI = 79, which will
give the transformed yVI2 − 79yV2 which is entirely similar to the first formula
y′2 − 79y2.

I do 6◦. mV <
√
79+8
1 and >

√
79+8
1 − 1, knowing mV = 16, which gives

qV = 8 and rVI = 15. So I remark that these values of qV and rVI are the
same as q′ and r′′ from No. 2, so that as the difference of the exponents of
q is even, we will recover the same transformation which we have already had.
From this it follows that the formula y′2 − 79y2 cannot be changed into any
other formula than this one: 2yIV ± 2yIVy′′′ − 39y′′′2. So, among all the for-
mulas found for the divisors of t2 − 79u2 there are only these two: y2 − 79z2

and 2y2± 2yz− 39z2, which are identical, to which we must add their inverses
79z2 − y2 and 39z2 ∓ 2yz − 2y2, which are also identical.

Consider the formula 3y2 ± 2yz − 26z2, knowing 3y2 ± 2yy′ − 26y′2, and
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we will have 1◦. r′ = 3, q = 1, and r = 26, a always being = 79. So we will

suppose q′ = 1 + 3m′, r′′ = 79−q′2
3 , and since we cannot take m′ so that q′ is

not > r′′

2 , we will pass to another transformation.

We will thus do 2◦. m′ <
√
79−1
3 and >

√
79−1
3 − 1; so m′ = 2, q′ = 7, and

r′′ = 10. Then we will suppose q′′ = 7− 10m′′, r′′′ = 79−q′′2
10 ; we will thus take

m′′ = 1 to have q′′ = −3 < 10
2 , and we will have r′′′ = 7 > 2q′′. So we will have

the transformed 7y′′2−6y′′y′′′−10y′′′2, which will have the required conditions.

Let 3◦. m′′ <
√
79+7
10 and >

√
79+7
10 − 1; thus m′′ = 1, q′′ = −3, and

r′′′ = 7. Next let it be supposed that q′′′ = −3 + 7m′′′ and rIV = 79−q′′′2
7 ;

since we cannot take m′′′ so that q′′′ is not > r′′′

2 , we will pass to the following
transformation.

Thus we will do 4◦. m′′′ <
√
79+3
7 and >

√
79+3
7 −1, which is to say m′′′ = 1,

and we will have q′′′ = 4, rIV = 9. Next we will suppose qIV = 4 − 9mIV,

rV = 79−qIV2

9 , so we cannot take mIV so that qIV is not > rIV

2 ; therefore, etc.o

We will do 5◦. mIV <
√
79+4
9 and >

√
79+4
9 − 1, which is to say mIV = 1;

thus qIV = −5, and rV = 6, after which we will do qV = −5 + 6mV and

rVI = 79−qV2

6 . Here we may take mV = 1, which gives qV = 1 and rVI = 13,
values which have the required conditions; so that we will have the transformed
6yVI2 + 2yVIyV − 13yV2.

Let 6◦. mV <
√
79+5
6 and >

√
79+5
6 − 1, so mV = 2, qV = 7, and rVI = 5.

Next let it be supposed that qVI = 7− 5mVI and rVII = 79−qVI2
5 , and it is clear

that taking mVI = 1 we will have qVI < rVI

2 . We will then have qVI = 2 and
rVII = 15, so that the transformed 15yVI2+4yVIyV−5yV2 will have the required
conditions.

Let us take 7◦. mVI <
√
79+7
5 and >

√
79+7
5 − 1, so mVI = 3 and qVI = −8,

rVII = 3. Next we will suppose qVII = −8 + 3mVII and rVIII = 79−qVII2
3 , and

taking mVII = 3 we will have qVII = 1 < r′′′

2 and rVIII = 26 > 2qVII, which
will give the transformed 3yVIII2 + 2yVIIIyVII − 26yVII2, which is similar to the
proposed expression.

oThe “etc.” is missing in the original manuscript. However, it is included in the reprinting
in Oeuvres de Lagrange, Vol. 3, p. 751.
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So we will again do 8◦. mVII <
√
79+8
3 and >

√
79+8
3 − 1, that is to say

mVII = 5, and consequently qVII = 7 and rVIII = 10, values which are the same
as q′ and r′′. So the same transformed which we have already found would
repeat if we continued the calculation.

Now we return to the same values of r′ and r from No. 1, but instead of
supposing q = 1, we put q = −1; so q′ = −1 + 3m′ and r′′ = 79−q′2

3 . Since

there is no m′ for which q′ becomes < r′

2 , we must pass immediately to another
transformation.

Thus we will do 2◦. m′ <
√
79+1
3 and >

√
79+1
3 − 1, so m′ = 3 and q′ = 8,

r′′ = 5. Next we will suppose q′′ = 8− 5m′′, r′′′ = 79−q′′2
5 ; and it is clear that

taking m′′ = 2, q′′ will not be > r′′

2 . Thus we will have q′′ = −2 and r′′′ = 15,
so that it will result in the transformation 15y′′2 − 4y′′y′′′ − 5y′′′2, which has,
as we see, the required conditions.

We will have 3◦. m <
√
79+8
5 and >

√
79+8
5 −1, which is to say m′′ = 3, from

where q′′ = −7, r′′′ = 6. Next we will suppose q′′′ = −7+6m′′′, rIV = 79−q′′′2
6 ;

and we will take m′′′ = 1 to get q′′′ = −1 and rIV = 13, which will give the
transformed 6yIV2 − 2yIVy′′′ − 13y′′′2, which has the required conditions.

Let 4◦. m′′′ <
√
79+7
6 and >

√
79+7
6 − 1, so m′′′ = 2 and q′′′ = 5, rIV = 9.

Next we will suppose qIV = 5 − 9mIV and rV = 79−qIV2

9 ; and we may take

mIV = 1, which will give qIV = −4 < rIV

2 . But then we will have rV = 7 < 2qIV,
so that these values are not suitable.

So let 5◦. mIV <
√
79+5
9 and >

√
79+5
9 − 1, so mIV = 1 and qIV = −4,

rV = 7. Then we will do qV = −4 + 7mV and rVI = 79−qV2

7 and we may take

mV = 1, which will give qV = 3 < rV

2 and rVI = 10 > 2qV; so we will have this
transformation 7yVI2 + 6yVIyV − 10yV2.

Let 6◦. mV <
√
79+4
7 and >

√
79+4
7 − 1, so mV = 1, and qV = 3, rVI = 10.

We then do qVI = 3− 10mVI and rVII = 79−qVI2
10 , and since we cannot take mVI

so that qVI is not > rVI

2 we will pass first to the following transformation.

So let 7◦. mVI <
√
79+3
10 and

√
79+3
10 −1, so mVI = 1 and qVI = −7, rVII = 3.

We then do qVII = −7 + 3mVII and rVIII = 79−qVII2
3 , and taking mVII = 2 we
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will have qVII = −1 < rVII

2 and rVIII = 26 > 2qVII. Thus we will have the trans-
formed 3yVIII2−2yVIIIyVII−26yVII2, which is analogous to the proposed formula.

Finally let 8◦. mVII <
√
79+7
3 and >

√
79+7
3 − 1, so mVII = 5 and qVII = 8,

rVIII = 5, values which are the same as those of q′ and r′′ in No. 2 above; so
the operation will terminate.

Therefore, we see that the formula 3y2±2yy′−26y′2 can only provide these
transformations: 7y′′2 − 6y′′y′′′ − 10y′′′2, 6yV2 + 2yVIyV − 13yV2, 15yVI2 +
4yVIyV − 5yV2, and 15y′′2 − 4y′′y′′′ − 5y′′′2, 6yIV2 − 2yIVy′′′ − 13y′′′2, 7yVI2 +
6yVIyV − 10yV2; from this and from what has already been found above I
conclude that the twelve formulas that we have given for the divisors of the
numbers of the form t2 − 79u2 may be reduced to these four:

y2 − 79z2, 3y2 ± 2yz − 26z2,

79z2 − y2, 26z2 ∓ 2yz − 3y2,

which must be regarded as essentially different from one another, so that they
do not admit any further reduction.

28. According to these principles we may construct two Tables for the forms
of the odd divisors of the numbers t2+au2 and t2−au2 supposing successively
that a = 1, 2, 3, etc.

Here are the Tables constructedp up to a = 31. It would be good to con-
tinue them at least up to 100, but here we will be content to put on the path
those who will want to take on this work in the future.

We will remark, with regard to the second Table, that the ambiguous signs
± which we find, denote that the values of p and r which are affected may be
taken equally well to have positive or negative signs. So, since a = 2 results in
p = ±1, q = 0, r = ±2, it follows that every odd divisor of t2 − 2a2 will be
simultaneously of the form y2− 2z2 and 2z2− y2, as well as the others, so that
in this case we will be free to take positive or negative signs.

We must remark again that we omitted for simplicity all the values of a
which are equal to squares or are divisible by squares; this is why in the column
of values of a one finds neither the number 4, nor the number 8, etc. Indeed,
it is evident that the formula t2 +4u2 is included under this one, t2 + u2 where

pLiterally, “pushed.”
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a = 1. We also see that the formula t2 + 8u2 is reducible to this one, t2 + 2u2

where a = 2, as well as the others.

40

Euleriana, Vol. 4 [], Iss. 1, Art. 2

https://scholarlycommons.pacific.edu/euleriana/vol4/iss1/2
DOI: 10.56031/2693-9908.1065



Table I.

Formula of the proposed numbers: t2 + au2.

Formula of their odd divisors: py2 ± 2qyz + rz2, where pr − q2 = a.

Values Corresponding values of

of a p q r

1 1 0 1

2 1 0 2

3 1 0 3

5 1, 2 0, 1 5, 3

6 1, 2 0, 0 6, 3

7 1 0 7

10 1, 2 0, 0 10, 5

11 1, 3 0, 1 11, 4

13 1, 2 0, 1 13, 7

14 1, 2, 3 0, 0, 1 14, 7, 5

15 1, 3 0, 0 15, 5

17 1, 2, 3 0, 1, 1 17, 9, 6

19 1, 4 0, 1 19, 5

21 1, 3, 2, 5 0, 0, 1, 2 21, 7, 11, 5

22 1, 2 0, 0 22, 11

23 1, 3 0, 1 23, 8

26 1, 2, 3, 5 0, 0, 1, 2 26, 13, 9, 6

29 1, 3, 5 0, 1, 1 29, 10, 6

30 1, 3, 5, 2 0, 0, 0, 1 30, 10, 6, 17

31 1, 5 0, 2 31, 7
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Table II.

Formula of the proposed numbers: t2 − au2.

Formula of their odd divisors: py2 ± 2qyz − rz2, where pr + q2 = a.

Values Corresponding values of

of a p q r

1 1 0 1

2 ±1 0 ±2
3 1, −1 0 3, −3
5 ±1 0 ±5
6 1, −1 0 6, −6
7 1, −1 0 7, −7

10 ±1, ±2 0 ±10, ±5
11 1, −1 0 11, −11
13 ±1 0 ±13
14 1, −1 0 14, −14
15 1, −1, 3, −3 0 15, −15, 5, −5
17 ±1 0 ±17
19 1, −1 0 19, −19
21 1, −1 0 21, −21
22 1, −1 0 22, −22
23 1, −1 0 23, −23
26 ±1, ±2 0 ±26, ±13
29 ±1 0 ±29
30 1, −1, 2, −2 0 30, −30, 15, −15
31 1, −1 0 31, −31

One will find the sequel to this research in the Volume for the year 1774.
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