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Euler’s First Proof of Stirling’s Formula

Abstract

We present a proof given by Euler in his paper “De serierum determinatione
seu nova methodus inveniendi terminos generales serierum” [4] (E189:“On
the determination of series or a new method of finding the general terms
of series”) for Stirling’s formula. Euler’s proof uses his theory of difference
equations with constant coefficients. This theory outgrew from his ear-
lier considerations on inhomogeneous differential equations with constant
coefficients of finite order that he tried to extend to the case of infinite
order.

1 Introduction

Stirling’s formula

n! ∼
√
2πn

(n
e

)n
for n → ∞. (1)

was first proven by Stirling. It can be proven by application of the Euler-
Maclaurin summation formula or the saddle point approximation. But in his
paper “De serierum determinatione seu nova methodus inveniendi terminos gen-
erales serierum” [4] (E189:“On the determination of series or a new method of
finding the general terms of series”) Euler gave another proof based on his the-
ory on inhomogeneous linear difference equations with constant coefficients. His
theory will be described in section 2. Finally, we will present and discuss Euler’s
proof in section 3.

2 Euler’s Theory of Inhomogeneous Difference Equa-
tions ith Constant Coefficients

In this section we will discuss Euler’s application of his theory of inhomogeneous
difference equations with constant coefficients to the derivation of Stirling’s for-
mula (1). Euler reduced them to a differential equation of infinite order. Having
treated the finite order case in “Methodus aequationes differentiales altiorum

147

Aycock: Euler’s First Proof of Stirling’s Formula

Published by Scholarly Commons, 2023



graduum integrandi ulterius promota” [3] (E188:“The method to integrate dif-
ferential equations of higher degrees expanded further”) before, in [4] he then
tried to transfer the results from the before-mentioned paper to the case of
infinite order. Unfortunately, this is not possible in the way Euler intended and
hence lead Euler to a wrong result when he applied his theory to the case of the
logarithm of the factorial. We will explain this in more detail in section 3. But
we will briefly state what we need to discuss Euler’s solution of inhomogeneous
linear differential equations of finite (see section 2.1) and infinite order (see
section 2.2) first.

2.1 Inhomogeneous Linear Differential Equations of Finite Order

In his paper [3], Euler considered equations of the form:(
a0 + a1

d

dx
+ a2

d2

dx2
+ · · ·+ an

dn

dxn

)
f(x) = g(x), (2)

with complex coefficients a1, a2, · · · , an. Euler did not state any conditions on
the function g(x)a. In §22, Euler described the following procedure: First, find
the zeros with their multiplicity of the expression:

P (z) = a0 + a1z + a2z
2 + · · ·+ anz

n.

Assume z = k is a solution of P (z) = 0. Then, if k is a simple zerob of P (z),
a solution of (2) is given by:

f(x) =
ekx

P ′(k)

∫
e−kxg(x)dx. (3)

Note that the indefinite integral introduces a constant of integration.

2.2 Reduction of the Difference Equation to a Differential Equa-
tion

2.2.1 General Idea

As we mentioned in section 1, Euler’s paper [4] is a paper actually devoted to
inhomogeneous difference equations with constant coefficients, i.e., equations
of the form:

aThe conditions on g(x) can be inferred from Euler’s solution. But since we will not need
this in this paper, we will not elaborate on this subject.

bIn this note, we will only need the case of simple zeros and hence will only state the
corresponding formula. In [3], Euler stated all cases from order 1 to 4 explicitly.
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a0f(x) + a1f(x+ 1) + · · ·+ anf(x+ n) = g(x), (4)

with complex coefficients a0, a1, · · · , an. Euler’s idea to solve (4) is as follows:
First, rewrite f(x+ 1), f(x+ 2), · · · , f(x+ n) in terms of f(x) and its deriva-
tives by applying Taylor’s theorem. Next, substitute the corresponding term
in equation (4). After some rearrangement, one arrives at an inhomogeneous
differential equation of infinite order with constant coefficients, i.e., an equation
of the form:

(
A0 +A1

d

dx
+A2

d2

dx2
+ · · ·+An

dn

dxn
+ · · ·

)
f(x) = g(x), (5)

where A0, A1, A2, · · · are complex coefficients.
Having transformed the initial equation (4) into this form, Euler argued that

the same procedure outlined in section (2.2) also applies here. More precisely,
one has to find all zeros of the expression:

A0 +A1z +A2z
2 + · · ·+Anz

n + · · · (6)

and has to construct the solution to (5) from those zeros. In his paper [4] Euler
considered various examples; but in this note we are interested in his solution
of the simple difference equation.

2.2.2 Example: The Simple Difference Equation

For the sake of explanation and since we will be need the result in section (3),
let us consider the simple difference equation, i.e., the equation

f(x+ 1)− f(x) = g(x) (7)

and let us describe Euler’s solution. First, Eulerc expanded f(x + 1) by using
Taylor’s theorem:

f(x+ 1) = f(x) +
d

dx
f(x) +

1

2!

d2

dx2
f(x) +

1

3!

d3

dx3
f(x) · · · .

Substituting this into equation (7), Euler arrived at the equation

cIn his paper [4] §55, Euler considered the equation y(x) − y(x − 1) = X(x) instead of
equation (7). But does not change the final result substantially, of course.
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(
d

dx
+

1

2!

d2

dx2
+

1

3!

d3

dx3
+ · · ·

)
f(x) = g(x).

Thus, according to his theory, Euler needed to find the zeros (and their multi-
plicity) of the expression

P (z) =
z

1!
+

z2

2!
+

z3

3!
+ · · · = ez − 1.

The general zero of this expression is z = log(1). But in his paper “De la
controverse entre Mrs. Leibnitz et Bernoulli sur les logarithmes des nombres
négatifs et imaginaires” [2] (E168:“On the controverse of Leibniz and Bernoulli
on the logarithms of negative and imaginary numbers”) Euler had demonstrated
that the logarithm of a number is a multivalued expression and hence concluded
that there are infinitely many zeros, namely:

z = 0,±2πi,±4πi,±6πi,±8πi, · · · .

Furthermore, all those zeros are simple, since:

lim
z→2kπi

ez − 1

z − 2kπi
= lim

z→2kπi

ez

1
= e2kπi = 1.

where L’Hospital’s rule was used in the first step. Therefore, Euler used the
general solution formula (3). This gave him:

f(x) =

∫
g(x)dx+ e2πix

∫
g(x)e−2πixdx+ e−2πix

∫
g(x)e+2πixdx (8)

+e4πix
∫

g(x)e−4πixdx+ e−4πix

∫
g(x)e+4πixdx+ · · ·

In [4] § 55, Euler expressed the solutions using sines and cosines instead of the
exponentials that we used here.

Thus, we arrived at Euler’s general solution of the simple difference equa-
tion (7). Unfortunately, as we will see below in section (3.3), there is a mistake
in Euler’s solution (8).

3 Application to the Factorial

In [4] §56 - §60, Euler applied his general formula (8) to the factoriald, i.e., the
function y(x) satisfying:

dMore precisely, Euler actually considered the difference equation satisfied by the Γ-function.
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y(x+ 1) = xy(x). (9)

This equation can be transformed into a simple difference equation by taking
logarithms. We have:

log y(x+ 1)− log y(x) = log(x).

3.1 Application of the General Formula

Applying (8) with f(x) = log y(x) and g(x) = log(x) we get:

f(x) = x log x− x+ C + e2πix
∫

log(x)e−2πixdx+ e−2πix

∫
log(x)e+2πixdx

(10)

+e4πix
∫

log(x)e−4πixdx+ e−4πix

∫
log(x)e+4πixdx+ · · ·

where
∫
log(x)dx was already evaluated and C is a constant of integratione.

3.2 Derivation of Stirling’s Formula

§59 -§60 of [4] contain the derivation of Stirling’s formula (1) from (10). Euler
first evaluated the general expression:

e2kπix
∫

e−2kπix log(x)dx.

He did so by integrating by parts infinitely many times with e−2kπix as function
to be integrated. In modern and compact notation the result isf:

e2kπix
∫

e−2kπix log(x)dx = − log(x)

2kπi
+

∞∑
n=1

(−1)n(n− 1)!

(2kπi)n+1xn
+ Cke

2kπix.

Ck is a constant of integration. Proceeding in the same way for all other
integrals, we have the formal identity:

eThis is the solution Euler gave in [4] §59. But he represented his solution using sines and
cosines.

fSince Euler used sin(2kπx) and cos(2πx) instead of e−2kπix, his result differs from the
one we will find. But the derivation is the same in both cases, of course.
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log y(x) = x log x−x+C+
∑

k∈Z\{0}

(
Cke

2kπix − log(x)

2kπi
+

∞∑
n=1

(−1)n(n− 1)!

(2kπi)n+1xn

)

Let us simplify the sum. First, we note that

C +
∑

k∈Z\{0}

Cke
2kπix =: h(x)

is a general periodic function, i.e., it satisfies h(x+ 1) = h(x) for all x. Next,∑
k∈Z\{0}

log(x)

2kπi
= 0,

since the terms cancel each other. Therefore, we just need to evaluate the
double sum. By a formal calculation we have:

∑
k∈Z\{0}

∞∑
n=1

(−1)n(n− 1)!

(2kπi)n+1xn
=

∞∑
n=0

∞∑
k=1

2

k2n+2
· (−1)n(2n)!

(2π)2n+2 · x2n+1
. (11)

The sum over k had been evaluated by Euler. The general formula can found,
e.g., in [1] and in modern notation reads:

∞∑
k=1

1

k2n
=

(−1)n−1(2π)2nB2n

2(2n)!
, (12)

where Bn is the n-th Bernoulli number. Inserting this into (11), we find:

∑
k∈Z\{0}

∞∑
n=1

(−1)n(n− 1)!

(2kπi)n+1xn
=

∞∑
n=0

2 · (−1)n(2π)2n+2B2n+2

2(2n+ 2)!
· (−1)n(2n)!

(2π)2n+2 · x2n+1
.

Many terms cancel such that:

∑
k∈Z\{0}

∞∑
n=1

(−1)n(n− 1)!

(2kπi)n+1xn
=

∞∑
n=1

B2n

(2n− 1)2nx2n−1
.

Therefore, inserting everything we found into (10) we get:

log y(x) = x log x− x+ h(x) +

∞∑
n=1

B2n

(2n− 1)2nx2n−1
, (13)
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where h(x) satisfies h(x+ 1) = h(x). This equation is to be understood as an
asymptotic series of course and is the formula Euler arrived at in [4] §60, Euler
just substituted the explicit numbers for the Bernoulli numbers. Comparing (13)
to (1), the term log(

√
2π) is still missing. In [4] Euler argued that it follows

from considering a special case, e.g., x = 1g and the initial condition y(1) = 1
to (9) such that one arrives at the final formula:

log y(x) = x log x− x+ log(
√
2π) +

∞∑
n=1

B2n

(2n− 1)2nx2n−1
, (14)

if x is infinitely large. In [4] §60, Euler stated the formula as follows:

y(x) =
xx

ex

(
1 +

1

12x
+

1

288x2
− 139

51840x3
+ · · ·

)√
2π, (15)

which follows by inserting the explicit values for the Bernoulli numbers in (14),
taking the exponential and expanding the exponential of the sum.

3.3 Discussion of the Result

As it was remarked by G. Faber in a footnote in the Opera Omnia version of
[4], equation (14) and hence (15) is incorrect. The correct formula reads:

log y(x) = x log x− x+ log(

√
2π

x
) +

∞∑
n=1

B2n

(2n− 1)2nx2n−1
, (16)

i.e., Euler’s formula is off by the term log(
√
x). Furthermore, the term is not

missing due to a calculational error, but due to a conceptional one. More
precisely, Euler’s idea to construct the solution from the zeros of (6) does not
work in general.

We can see how the missing term enters by a formal argumenth. We are
still interested in (7). Writing D for d

dx , this equation can also be represented
as:

gMore precisely, Euler argued that h(x) is to be considered as constant in this case and
the value of this constant is equal to the sum 1 −

∑∞
n=1

B2n
(2n−1)2n

which Euler claims to be
1
2
log(2π) without a proof in this paper, although the series does not converge due to the rapid

growth of the Bernoulli numbers. But Euler knew that one can ascribe the beforementioned
value to the sum, since it corresponds to the constant

√
2π in Stirling’s formula (1).

hThere are also rigorous arguments involving the theory of the Fourier transform. But this
would carry us too far away from our actual objective.
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(
eD − 1

)
f(x) = g(x).

Thus, formally the solution is given as:

f(x) =
(
eD − 1

)−1
g(x),

such that we have to find out how to express
(
eD − 1

)−1
. We only know how

to calculate Dnf(x) for n ∈ Z. Thus, the idea is to expand
(
eD − 1

)−1
into

a Laurent series in D around D = 0 apply it to g(x). There are many possi-
bility to perform this expansion, but for purposes we will only need the direct
expansion. This expansion had also been given by Euler, e.g., in “De seriebus
quibusdam considerationes” [1] (E130:“Considerations on certain series”) §27i.
The expansion reads:

(
eD − 1

)−1
=

∞∑
n=0

Bn
Dn−1

n!
= D−1 − 1

2
+

D

12
− D3

720
+ · · · , (17)

where Bn are the Bernoulli numbers again. Interpreting D−1 as an integration,
we can write:

f(x) =
(
eD − 1

)−1
g(x) =

∫
g(x)dx− 1

2
g(x) +

1

12

d

dx
g(x)− · · · , (18)

which is nothing but a modern representation of the Euler-Maclaurin summation
formula. Thus, Euler’s approach, i.e., constructing the solution from the zeros
of eD − 1, misses the term −1

2g(x). If we apply (18) to the factorial, i.e., take
g(x) = log(x) we arrive at (16).

4 Conclusion

In this note we briefly mentioned Euler’s theory how to solve inhomogeneous
ordinary differential equations of infinite order with constant coefficients and
Euler’s application of his theory to the derivation of Stirling’s formula (1). We
pointed out the conceptual error in Euler’s approach and provided an explanation
how to correct it (section 3.3). Nevertheless, there are many intriguing ideas
in [4], aside from Euler’s derivation of Stirling’s formula on which we focused,
such that we intend to cover more content from the before-mentioned paper in
the future.

iEuler considered the function z
1−e−z and did not state the general formula for the coeffi-

cients, but explained their origin.
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