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Euler’s variational approach to the elastica 
Sylvio R. Bistafa 
sbistafa@usp.br 

Abstract 
The history of the elastica is examined through the works of various contributors, including 
those of Jacob and Daniel Bernoulli, since its first appearance in a 1690 contest on finding the 
profile of a hanging flexible cord. Emphasis will be given to Leonhard Euler’s variational 
approach to the elastica, laid out in his landmark 1744 book on variational techniques. Euler’s 
variational approach based on the concept of differential value is highlighted, including the 
derivation of the general equation for the elastica from the differential value of the first kind, 
from which nine shapes adopted by a flexed lamina under different end conditions are 
obtained. To show the potential of Euler’s variational method, the development of the unequal 
curvature of elastic bands based on the differential value of the second kind is also examined. 
We also revisited some of Euler’s examples of application, including the derivation of the Euler-
Bernoulli equation for the bending of a beam from the Euler-Poisson equation, the pillar critical 
load before buckling, and the vibration of elastic laminas, including the derivation of the 
equations for the mode shapes and the corresponding natural frequencies. Finally, the 
pervasiveness of Euler’s elastica solution found in various studies over the years as given on 
recent reviews by third parties is highlighted, which also includes its major role in the 
development of the theory of elliptic functions.          

Keywords: elastica, elastic curves, calculus of variations, Euler-Bernoulli equation, Euler-
Poisson equation, vibration of beams, elliptic integrals, elliptic functions  

1. Introduction 

On May 1690 Jacob Bernoulli (1655–1705) started a contest on finding the profile of 
a hanging flexible cord. By not specifying any condition which limits the problem to 
the nonelastic case, he challenges the mathematicians of the time to find the shape 
of a hanging elastic rope, on the belief that if one finds the curvature for the elastic 
case, then that of the nonelastic case can be obtained from it. 

In the same year, Gottfried Leibniz (1646–1716) replied to Jacob Bernoulli’s 
challenge saying that he would considered instead the shape which a thread hanging 
from its two points takes because of bending under its own weight, on the assumption 
that the thread, like a chain, keeps the same length and is neither stretched nor 
shortened as a normal thread would do. This assumption simplified the original 
challenge into finding the catenary curve. If the rope is elastic in all its parts, the 
problem turns into finding the elasticaa. On the other hand, if the rope is as rigid as a 
chain, it turns into finding the catenariab. 

From then on, the focus of the participating mathematicians was to find the 
curvature of the catenaria, all except Jacob Bernoulli who remained with his original 
problem. In the 1691 June issue of the Acta Eruditorum, three solutions were 

 
a Latin for a thin strip of elastic material. 
b The catenary is the equilibrium shape assumed by a chain suspended from two points. One 
speaks of a chain rather than any kind of string since a chain with very small links is fully 
flexible and unstretchable, as the idealized physical model assumes. 
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published: one by Jacob’s brother Johann Bernoulli (1667–1748), along with two other 
solutions by Christian Huygens (1629–1695) and Leibniz (see Sepideh Alassi [1] for 
more details about these developments).  

In the same issue of the Acta Eruditorum, Jacob Bernoulli posed the precise 

problem of the elastica (see Raph Levien [2]):  

Assuming a lamina 𝐴𝐵 of uniform thickness and width and negligible weight 

of its own, supported on its lower perimeter at 𝐴, and with a weight hung 

from its top at 𝐵, the force from the weight along the line 𝐵𝐶 sufficient to 

bend the lamina perpendicular, the curve of the lamina follows this nature: 

The rectangle formed by the tangent between the axis and its own tangent 

is a constant area. 

This poses one specific instance of the general elastica problem, now generally 
known as the rectangular elastica, because the force applied to one end of the curve 
bends it to a right angle with the other end held fixed (Fig.1). 

 
Figure 1: In 1691 Jacob Bernoulli poses the elastica problem. 

By 1692, Jacob Bernoulli working on a geometric construction of the curvature 
gives the differential equation of the curve 𝐴𝐵 in a readily computable form; 𝑦 can be 
obtained as the integral of a straightforward function of 𝑥 from 

𝑑𝑦 =
𝑥2𝑑𝑥

√𝑎4 − 𝑥4
, 

saying that he would be showing it in due time. 
Indeed, two years later, in 1694, Jacob Bernoulli published in Acta Eruditorum 

the geometric construction for the elastica, confirming the above result. 
As Alassi [1] points out, at the time, a solution to a problem would only be 

accepted if a geometric construction was provided. Descartes introduced this 
problem-solving technique in 1637 in La Géométrie, which was then widely used by 
the mathematicians. This technique considers that the intersections between 
algebraic curves were enough to solve all kinds of geometrical problems. However, 
mathematicians found that other geometric curves, such as a hyperbola, would make 
constructions easier. For instance, Leibniz used a logarithmic curve in his geometric 
construction of the catenaria. Mechanical devices such as levers and pulleys were also 
used, and Jacob Bernoulli used a pulley in his geometric solution of the velaria and a 
lever in his geometric construction of the elastica. 
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The geometric construction by quadraturec was explained by Alassi [1] on a 
simplified version of Jacob Bernoulli’s geometric construction of the elastica as 
follows. An elastic band is fixed at one end and a weight is suspended from its free 
end 𝑂 (Fig. 2), and the shape that this elastic band takes, the elastica, is sought. The 
main difficult in this procedure is to find the auxiliary curved. However, in physical 
problems such as the elastica, the auxiliary curve can be found by identifying the 
physical characteristics of the system. For example, the elasticity must be defined 
geometrically as a curve describing the relation between stress and strain. Once this 
curve is found, the rest of the construction follows. 

 
Figure 2: Simplified illustration of Jacob Bernoulli’s construction of the elastica (Bos, 1986, as 

cited in Alassi [1]) 

In a very complicated development (more details in Refs. [1, 2, 3] and with the 
help of the auxiliary curve 𝑂𝑍 (linea tensionum), Jacob Bernoulli eventually shows that 
the ordinate 𝑦 on the elastic curve is found from the integral  

 
c In the 17th century, finding the area of a figure was often called quadrature, or squaring, 
which is equivalent to the integral. 
d Jocob Bernoulli introduced the method of finding the unknown curve (the elastica) from a 
known one (the auxiliary curve) which has the same abscissa. Bernoulli demonstrates the 
method in Meditationes CCV: 
http://ark.dasch.swiss/ark:/72163/1/0801/__7Hlj1WR8CIap=1BIcqZgr, where the auxiliary 
curve is called linea tensionum (“line of tension”). The role of linea tensionum is explained in 
Ref. [3]. 
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𝑦 = ∫
𝑥2𝑑𝑥

√𝑎4 − 𝑥4

𝑥

0

. e 

Jacob Bernoulli conjectured that this integral could not be expressed in terms of 
'known' functions, sin, exp, sin-1, and succeeded in finding a series solution which is 
given byf 

𝑦 = ∫
𝑥2𝑑𝑥

√𝑎4 − 𝑥4
=

𝑥3

3𝑎2
+

𝑥7

2 ∙ 7 ∙ 𝑎6
+

1 ∙ 3 ∙ 𝑥11

2 ∙ 4 ∙ 11 ∙ 𝑎10

𝑥

0

+
1 ∙ 3 ∙ 5 ∙ 𝑥15

2 ∙ 4 ∙ 6 ∙ 15 ∙ 𝑎14
+ ⋯ 

Shortly after Jacob Bernoulli's publication, Huygens promptly released a concise 
note within the same forum. In this note, he showcased various potential 
configurations that the elastica could assume. He also made an important 
observation, highlighting that Bernoulli's quadrature solely addressed the rectangular 
elastica. These shapes are presented in sequential order of increasing force at the 
endpoints. Among them, shape A distinctly corresponds to the rectangular elastica 
(Fig. 3). 

 
Figure 3: Huygens’s 1694 several possible shapes where shape A is Jacob Bernoulli’s solution. 

Jacob Bernoulli acknowledged this criticism and indicated that his technique 
could be extended to handle these other cases by using a non-zero constant for the 
integration. Nonetheless, more than 40 years had passed for a definitive solution to 
the elastica problem by Euler’s analysis of 1744. 

2. Daniel Bernoulli and Leonhard Euler elastica 

In 1724, an anonymous author restarted Jacob Bernoulli’s challenge of 1690 by 
proposing the unification of the catenaria and the elastica. This challenge was left 
unattended for years until Daniel Bernoulli (1700–1782) and Leonhard Euler (1707–
1783), working together in a friendly competition, published in the same 1732 

 
e This integral is known as an elliptic integral. The study of elliptical integrals can be said to 
start in 1655 when Wallis began to study the arc length of an ellipse. In fact, he considered 
the arc lengths of various cycloids and related these arc lengths to that of the ellipse. Both 
Wallis and Newton published an infinite series expansion for the arc length of the ellipse. 
More information on elliptic integrals and elliptic functions cab be found, for example, at 
http://www.mhtlab.uwaterloo.ca/courses/me755/web_chap3.pdf. Accessed Nov 11, 2022. 
f Jacob Bernoulli demonstrates this in the Meditationes CLXXV: 
https://beol.dasch.swiss/transcription/http:%2F%2Frdfh.ch%2F0801%2FsobTv3-
LT4m_Q5MBtFA8Xw. See also Alassi [1].   
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February issue of Commentarii Academiae Scientiarum Petropolitanae [4, 5] 
reciprocal contributions to this challenge. 

Daniel Bernoulli in his 1732 treatise Methodus universalis determinandae 
curvatura fili ... [4] considered an elastic band fixed at one end, which bends partially 
under its own weight and partly through a suspended load at the free end. The 
moment of the suspended weight is 𝑃𝑥, where 𝑥 is the distance from the free end to 
an arbitrary point of the band, and the moment of the weight of the band is given by 

𝜎∫ 𝑠𝑑𝑥, where 𝜎 is the weight/unit of length of the band (supposedly uniform). In 
equilibrium, the total moment of these external forces should be balanced by the 
moment of the internal forces of the elastic band ℳ, which Daniel Bernoulli 
postulates as being related to the radius of curvature 𝑟 at an arbitrary point of the 
band by the formula 

ℳ =
𝛽

𝑟
, 

where 𝛽 is the modulus of bendingg. 
As we shall see next, Euler adopted essentially the same expression in his 

derivation of the elastica as given in his 1732 treatise [5], and this result became the 
first explicit definition of the fundamental law of the elasticah. This result is known 
today as the Euler-Bernoulli formula for the bending of a beam, recording the 
achievements of Euler and Daniel Bernoulli. In fact, Jacob Bernoulli had implied in his 
extensive work with the elastica that the load is inversely proportional to the radius 
of curvature 𝑟, however, he never stated the law of the elastica in that way (see Alassi 
[1] for more details). 

Eventually, Daniel Bernoulli in his 1732 treatise [4] obtains ℳ = 𝜎∫ 𝑠𝑑𝑥 + 𝑃𝑥, 
and finally, 

𝜎∫ 𝑠𝑑𝑥 + 𝑃𝑥 =
𝛽

𝑟
. 

Daniel Bernoulli left the study of the curvature to Euler; he stated: “… whatever 
can be thought out about the kind of curve present, which our own illustrious Euler 
correctly observed, who himself thus had proposed this problem to be solved, so that 
nothing can be added.” 

Euler is known to be the one who unified the catenary problem and the elastica 
problem in his 1732 treatise E8 -- Solutio problematis de invenienda curva, quam 
format lamina utcunque elastica ... [5], stating at the Introduction “… The most 
famous Jacob Bernoulli was the first, and later many others, to assign a curve to 
curved elastic strips, which is known by the name of the elastic curve (the elastica), 
where it is understood that their solutions are only applicable to elastic strips without 

 
g Nowadays, this formula is written as ℳ =

𝐸𝐼

𝑟
, where 𝐸 is the Young’s module, and 𝐼 is the 

second moment of area or area moment of inertia. The product 𝐸𝐼 is known as the flexural 
rigidity. 
h In Daniel Bernoulli’s derivation “... he does no more than restate it … for Daniel Bernoulli, as 
with most principles he considered true, it seems to be self-evident and scarcely worthy a 
comment …” In The Rational Mechanics of Flexible or Elastic Bodies, C. Truesdell, 1960, 
p.147. 
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weight. Although the curvature of a heavy elastic strips may take place in the realm 
of nature, yet, as far as I know, no one has yet determined it …” Euler then reveals the 
scope of his work “… Indeed the first investigation extends this far, that the curve 
formed by a heavy laminar shape, with one end fixed and having some force applied 
to the other end, can be found. However, at the start of the work I consider a more 
general lamina of arbitrary elasticity, and having some hanging weights attached …” 

Like Jacob Bernoulli’s geometric construction of the elastica, Euler also uses an 
auxiliary curve in his developments. He begins by considering 𝐴𝑀 as a curved lamina 
(Fig. 4), with 𝐴 as the origin of a left-going x-axis, and with forces applied at all points 
𝑁, given by the auxiliary curve 𝐵𝐺 as 𝑔(𝑥) which represents a downward force/unit 
of length, due perhaps to the weight of the lamina, such that the area 𝐴𝑄𝐻𝐵 is found 
by ℎ = ∫ 𝑔(𝑥′)𝑑𝑥′. Then the sum of all the moments of all the forces to the curve 
𝐴𝑁𝑀 turning about 𝑀 shall be as the area 𝐴𝑃𝑇 …”   

The moment at 𝑀 of all the forces up to 𝑃, whose coordinate with respect to 

some origin is 𝑥, is given by 𝑀(𝑥) = ∫ 𝑥′
𝑋

𝑥
𝑔(𝑥′)𝑑𝑥′, where the coordinate of point 𝐴 

is 𝑋. The integration is performed by parts as 𝑀(𝑥) = [𝑥ℎ(𝑥)]𝑥
𝑋 − ∫ ℎ(𝑥′)𝑑𝑥′ =

𝑋

𝑥

∫ ℎ(𝑥′)𝑑𝑥′𝑥

𝑋
, since either 𝑥 = 0 or ℎ(𝑋) = 0. This result is represented by the area 

𝐴𝑃𝑇 above the curve 𝐴𝑉𝑇. 
By calling a general point 𝑥 on this curve by 𝑃 = 𝑃(𝑥), hence the sum of all the 

moments at 𝑀 will be equal to ∫ 𝑃𝑑𝑥. 
Next, the radius of curvature at the point 𝑀 is put equal to 𝑟; and the angle which 

two elements in 𝑀 establish varies inversely with 𝑟. The elastic strength at 𝑀 is 

designated by the letter 𝑣; the strength producing this angle varies as 
𝑣

𝑟
 (by 

hypothesis). As shown above, the sum of the moments of the distributed vertical 

forces is equal to ∫  𝑃𝑑𝑥 and, similarly, the sum of the moments of the distributed 

horizontal forces ∫  𝑄𝑑𝑥.  By calling 𝐸 and 𝐹 localized vertical and horizontal forces 
distanced 𝑥 and 𝑦 from 𝑀, respectively, thus, the total strength of the moments acting 

at 𝑀 is equal to 𝐸𝑥 + 𝐹𝑦 + ∫ 𝑃𝑑𝑥 + ∫ 𝑄𝑑𝑦. Since 
𝑣

𝑟
 should be proportional to that 

moment, the equation is obtained: 
𝐴𝑣

𝑟
=  𝐸𝑥 +  𝐹𝑦 + ∫ 𝑃𝑑𝑥 +  ∫ 𝑄𝑑𝑦, where 𝐴 is a 

constant. 

 
Figure 4: A curved lamina 𝐴𝑀 and the auxiliary curve 𝐵𝐺. Source: Euler [5], fig. 3.  

161

Euleriana, Vol. 3 [2023], Iss. 2, Art. 7

https://scholarlycommons.pacific.edu/euleriana/vol3/iss2/7
DOI: 10.56031/2693-9908.1055



 
 

Then, after a heavy mathematical manipulation of this result, Euler develops the 
equation that gives all the possible curves which perfectly flexible bodies (𝑣 = 0) can 
form by being displaced in some manner. However, because of the forbidding 
appearance of the expressions developed by Euler, we will refrain to show them here 
(for more details, see Ian Bruce’s translation of Euler’s 1732 treatise [5]). 

Next, Euler poses several problems, in which he develops solutions for 
catenaries, awnings, and sails. It is only at the end of the 1732 treatise that Euler 
considers finding the curve 𝐵𝑀𝐴 that an elastic strip fixed at 𝐵 and with a free end at 
𝐴 forms under its own weight, from the simplified form of the general equation 

𝐴𝑣

𝑟
=  ∫ 𝑃𝑑𝑥, 

where 𝐴 is a constant, 𝑣 is the elastic strength, and 𝑟 is the radius of curvature at a 
given point 𝑀 of the strip.  

For a wire with the same weight/unit length everywhere, 𝑑𝑃 is constant and 
equal to 𝑎𝑑𝑠 (𝑃 = 𝑎𝑠), and since the elasticity is everywhere the same, we may put 
𝑣 =  𝑏; and the equation becomes  

𝐴𝑏

𝑟
=  ∫ 𝑎𝑠𝑑𝑥, 

which, by considering that 
1

𝑟
=

𝑑2𝑥

𝑑𝑠𝑑𝑦
, 𝑑𝑦 = 𝑑𝑠√1 − 𝑝2, and getting rid of the 

superfluous constants 𝑎 and 𝑏 results in  

𝑠𝑝2(1 − 𝑝2)
3
2𝑑𝑠2 = 𝐴𝑝𝑑𝑝2 + 𝐴(1 − 𝑝2)𝑑2𝑝. 

Regrettably, Euler considers that even these adaptations do not allow the 
construction of the curve. 

3. Euler’s variational analysis of the elastica 

The ideas behind the use of variational techniques to solve the elastica problem 
appear in a series of letters between Daniel Bernoulli and Euler (see Lawrence 
D’Antonio [3] for more details about this epistolary exchange). The first mention was 
in a 7 March 1739 letter, suggesting the “isoperimetric method” (an early name for 
the calculus of variations) for the elastica problemi. However, the first clear 
mathematical statement of the elastica, as a variational problem in terms of the 
stored energy, appears in a letter of October 1742 where Daniel Bernoulli conjectured 
that the minimum of the strain potential energy (in modern terminology) of a curved 

elastic lamina expressed as ∫
𝑑𝑠

𝑅2, assuming the element of the arclength 𝑑𝑠 is constant 

and indicating the radius of curvature by 𝑅, must result in the elastica. He admitted 

 
i According to Levien [2]: “... Many founding problems in the calculus of variations concerned 
finding curves of fixed length (hence isoperimetric), minimizing or maximizing some quantity 
such as area enclosed. Usually, additional constraints are imposed to make the problem 
more challenging, but, even in the unconstrained case, though the answer (a circle) was 
known as early as Pappus of Alexandria around 300 A.D, rigorous proof was a long time 
coming.” 
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that he had tried to find this minimum point himself, but his investigation had resulted 
in a differential equation of the fourth order, which he could not reduce to a lower-
order one (see Alassi [1]). Daniel Bernoulli then invited to Euler to try his skills on the 
minimization: “… There is nobody as perfect as you [Euler] for easily solving the 

problem of minimizing ∫
𝑑𝑠

𝑅2 using the isoperimetric method.”j This invitation resulted 

in Euler’s major research on elasticity, which was published in 1744 as Additamentum 
I, De Curvis Elasticis added as an appendix to his famous treatise Methodus inveniendi 
curvas lineas [6], a treatise on the calculus of variations. 

Methodus inveniendi curvas lineas is considered the fundamental work in the 
calculus of variations and, as such, has been examined by several modern 
investigators. Nonetheless, a complete annotated translation by Ian Bruce has only 
recently become available over the Internetk. This translation is introduced with a 
brief summary of the six chapters contained in the treatise, plus two appendices, in 
which Appendix A (Additamentum I) deals with curves associated with elastic laminas, 
which was later added to the main work by Euler. For convenience, Ian Bruce has 
subdivided the translation of Additamentum I in two appendices 1A and 1B. This is 
how he summarizes the content of the former: “… Euler sets out to show that his 
method of finding maxima or minima curves associated with generalized functions in 
the form of integrals, can be applied to finding the shape of loaded laminas or ribbons, 
as had then recently been established in a straightforward method from mechanics 
by Daniel Bernoulli, following on the earlier work of his uncle, Jacob Bernoulli. Most 
of the first part of this appendix, so subdivided for convenience, is given over to finding 
the nine classes or kinds of shapes adopted by a flexed lamina under different end 
conditions. An English translation exists already in Isis (1933) by Oldfather et al., of 
which I have just become aware, and have not referred to here …” Ian Bruce 
completes his contribution with two additional translations of Euler’s later overview 
of his main treatise on the calculus of variations: E296 “The elements of the calculus 
of variations”, and E297 “The analytical explanation of the method of maxima and 
minima.” 

One of the modern analysis of Methodus inveniendi curvas lineas is the article by 
Craig G. Fraser, “The Origins of Euler's Variational Calculus” [7], who appraises the 
work as ”... Euler succeeded in formulating the variational problem in a general way, 
in identifying standard equational forms of solution and in providing a systematic 
technique to derive them. His work included a classification of the major types of 
problems and was illustrated by a wide range of examples …” 

An explanation of Euler’s derivation of the general equation for elastic laminas 
that we have been able to identify is the one given by Clifford Truesdell [8, pp. 203–
204]. However, despite being a fundamental contribution to understand Euler’s 
formulation, we feel that more could be said regarding the introductory part of the 

 
j Levien [2] indicates that Truesdell also points out that this formulation wasn’t entirely novel; 
Daniel Bernoulli and Euler had corresponded in 1738 about the more general problem of 

minimizing ∫ 𝑅𝑚𝑑𝑠, and they seemed to be aware that the special case 𝑚 =  −2 

corresponded to the elastica.  
k https://17centurymaths.com/contents/Euler'smaxmin.htm 
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application of the variational formulation to the elastica given by Euler in the 
derivation of the general equation.  

Indeed, the method employed by Euler was laid out in Chapter IV of the 
Methodus inveniendi, which begins with the proposition: To find the equation 
between the two variables 𝑥 and 𝑦, thus so that for a given value of 𝑥, for example on 
putting 𝑥 = 𝑎, the formula ∫ 𝑍𝑑𝑥 shall obtain a maximum or minimum value, with 𝑍 
being a function of 𝑥, 𝑦, 𝑝, 𝑞, 𝑟 etc. either determinate or indeterminate. As usual: 𝑝 =
𝑑𝑦

𝑑𝑥
, 𝑞 =

𝑑𝑝

𝑑𝑥
, 𝑟 =

𝑑𝑞

𝑑𝑥
, 𝑠 =

𝑑𝑟

𝑑𝑥
 etc. 

Next, Euler gives what he calls the differential values of the formula ∫ 𝑍𝑑𝑥 for 
various kinds of the function 𝑍, which may correspond always to the magnitude of the 
variable 𝑥, considered to be 𝑥 = 𝑎. The differential value is a key concept in Euler’s 
method of calculus of variations, which is defined as: “… The differential value of a 
given maxima or minima corresponding to a formula is the difference between the 
values, which this formula may maintain both on the curve itself, as well as on the 
same changed by an infinitely small amount.” In Chapter IV, five kinds of differential 
values of increasing complexity are given by Euler, from where the differential value 
of the first kind was taken in the development of the general equation for the elastica. 

Suppose that the curve 𝑎𝑧 in Fig. 5 is such that the integral ∫ 𝑍𝑑𝑥 is a maximum 
or minimum. A comparison curve 𝑎𝑚𝑣𝑜𝑧 is then obtained by increasing the ordinate 
𝑁𝑛 by an infinitely small quantity 𝑛𝑣. 

 

Figure 5: Geometrical elements used by Euler to derive the expressions for the differential 
values associated with integrals of the form ∫ 𝑍𝑑𝑥. (Source: Figure 4 of Methodus inveniendi) 

Euler writes the total differential of 𝑍 in the following form 

𝑑𝑍 = 𝑀𝑑𝑥 + 𝑁𝑑𝑦 + 𝑃𝑑𝑝 + 𝑄𝑑𝑞 + 𝑅𝑑𝑟 + 𝑒𝑡𝑐, 

where 𝑀 =
𝜕𝑍

𝜕𝑥
, 𝑁 =

𝜕𝑍

𝜕𝑦
, 𝑃 =

𝜕𝑍

𝜕𝑝
, 𝑄 =

𝜕𝑍

𝜕𝑞
, 𝑅 =

𝜕𝑍

𝜕𝑟
, etc. 

He then derives the differential value of the first kind for the general formula 

∫ 𝑍𝑑𝑥 as  

𝑛𝑣 ∙ 𝑑𝑥 (𝑁 −
𝑑𝑃

𝑑𝑥
+

𝑑2𝑄

𝑑𝑥2
−

𝑑3𝑅

𝑑𝑥3
+ 𝑒𝑡𝑐), 

which is a result that Euler applies in several examples throughout his treatise.  
Right at the beginning of Additamentum I of Methodus inveniendi, after having 

mentioned that Daniel Bernoulli had indicated to him that the general force (potential 
energy), which is present in a curved elastic lamina, can be included in a single 
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expression which he calls the force potential, Euler sets out his objective “… so that 
amongst all the curves of the same length, which not only may pass through the points 
A and B, but also may be tangents at these points with right lines given, that may be 

defined in which the value of this expression ∫
𝑑𝑠

𝑅2 shall be a minimum.” 

Here, 𝑑𝑠 is the element of the curve, given by 𝑑𝑠 = √1 + 𝑝2, and 𝑅 is the radius 

of curvature, which is given by the well-known formula 𝑅 =
(1+𝑝2)

3/2

𝑞
, where 𝑝 =

𝑑𝑦

𝑑𝑥
 

and 𝑞 =
𝑑𝑝

𝑑𝑥
. From these, two integrals of the general form ∫ 𝑍𝑑𝑥 are introduced: 

∫ 𝑑𝑥√1 + 𝑝2 (𝑍 = √1 + 𝑝2), which comes from the ∫ 𝑑𝑠, and represents the 

isoperimetric condition, and  ∫
𝑞2𝑑𝑥

(1+𝑝2)5/2  (𝑍 =
𝑞2

(1+𝑝2)5/2), which comes from  ∫
𝑑𝑠

𝑅2, and 

this is the integral that must be a minimum. 
From the general expression for 𝑑𝑍 = 𝑀𝑑𝑥 + 𝑁𝑑𝑦 + 𝑃𝑑𝑝 + 𝑄𝑑𝑞, the 

differential value associated with the integral ∫ 𝑑𝑥√1 + 𝑝2 is 𝑛𝑣 ∙ 𝑑𝑥 (−
𝑑𝑃

𝑑𝑥
) =

−𝑛𝑣 𝑑𝑃 = −𝑛𝑣 𝑑.
𝑝

√1+𝑝2
. By its turn, the differential value associated with the 

integral ∫
𝑞2𝑑𝑥

(1+𝑝2)5/2 is 𝑛𝑣 ∙ 𝑑𝑥 (−
𝑑𝑃

𝑑𝑥
+

𝑑2𝑄

𝑑𝑥2) = 𝑛𝑣 (−𝑑𝑃 +
𝑑𝑄

𝑑𝑥
), where 𝑃 =

−5𝑝𝑞2

(1+𝑝2)7/2 

and 𝑄 =
2𝑞

(1+𝑝2)5/2. 

Because these two differential values are associated with the same curve, they 
should be equal, and the equation for the sought curve is then 

𝛼 𝑑.
𝑝

√1 + 𝑝2
= 𝑑𝑃 −

𝑑𝑄

𝑑𝑥
, 

where 𝛼 was introduced as a scaling factor, which was later identified as a Lagrange 
multiplier [2]. This equation is essentially the starting point of Truesdell explanation 
of Euler’s derivation of the general equation for the elastica [8, pp. 203–204]. 

This is how Daniel Bernoulli reacts to the solution of the fourth-order differential 
equation obtained by him earlier for the elastica in the October 1742 letter to Euler: 
“… given my assumption that the potential energy of the elastic lamina must be 
minimal, as I’ve mentioned to you before. In this way I get a 4th order differential 
equation, which I have not been able to reduce enough to show a regular equation 
for the general elastica.”    

Indeed, the integration of the equation was accomplished by Euler with a long 
and hard to follow ad hoc procedure (for more details see Ian Bruce’s annotated 
translation of Additamentum I), to which Truesdell [8] highlights the main results, and 
eventually presents Euler’s final solution as 

𝑑𝑦 =
(𝑎2 − 𝑐2 + 𝑥2)𝑑𝑥

√(𝑐2 − 𝑥2)(2𝑎2 − 𝑐2 + 𝑥2)
 . 

It is now known that the integration of this equation may be expressed by elliptic 
functionsl. However, Euler follows a simple and direct analysis for different relations 

 
l Elliptic integrals can be viewed as generalizations of the inverse trigonometric functions and 
provide solutions to a wider class of problems. For instance, while the arc length of a circle is 
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between 𝑎 and 𝑐, which in some cases the integration was accomplished by series 
expansions or that result in simple integrable formulas. 

Euler then seeks in the section Enumeratio curvarum elasticarum to determine 
the “infinite variety of these elastic curves.” The above equation is the basis for Euler's 
graphical study of the elastic curve. With the aid of asymptotic behaviors and 
geometric relations Euler finds nine different curves, which were classified by Levien 

[2] in terms of the parameter 𝜆 =
𝑎2

𝑐2 and that are enumerated in the table below: 

 

Euler includes figures for six of the nine cases. Of the three remaining, species #1 
is a degenerate straight line, and species #9 is a circle. Species #3, the rectangular 
elastica, is of special interest, so it is rather disappointing that Euler did not include a 
figure for it (see Levien [2], D’Antonio [3], Truesdell [8, pp. 205–210], and Fraser [9] 
for further discussions about these curves). Fraser [9] has additionally compared the 
classificatory scheme that Euler adopts for his transcendental general equation with 
the classificatory scheme that Newton employs for algebraic curves. 

Euler’s figures (Source: L. Euler [6]) 

 
 

 
given as a simple function of the parameter, computing the arc length of an ellipse requires 
an elliptic integral. Similarly, the position of a pendulum is given by a trigonometric function 
as a function of time for small angle oscillations, but the full solution for arbitrarily large 
displacements requires the use of elliptic integrals. Many other problems in 
electromagnetism and gravitation are solved by elliptic integrals. From Wolfram Math World 
https://mathworld.wolfram.com/EllipticIntegral.html. Accessed Nov 11, 2022. 
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In the second part of Additamentum I, from the degenerate straight line (species 
#1), Euler obtains the well-known formula for the critical load 𝑃𝑐𝑟 for a straight vertical 
column, given by 

𝑃𝑐𝑟 =
𝜋2𝐸𝐼

𝑙2
, 

where 𝑙 is the length of the column, and, as before, 𝐸𝐼 is the flexural rigidity. 
The column will remain straight for loads less than the critical load. The critical 

load is the greatest load that will not cause lateral deflection (buckling); for loads 
greater than the critical load, the column will deflect laterally (further discussions on 
the so-called Column Problem can be found in Refs. [3, 8, 9]).  

The Euler-Poisson equation 
Although this topic was a later development and not directly considered by Euler in 
his treatise, the time is ripe to show an application of the Euler-Poisson to the elastica. 
As already considered earlier, the elastica treated as a variational problem becomes a 
problem of finding a minimum for 

∫
𝑑𝑠

𝑅2
= ∫

𝑞2𝑑𝑥

(1 + 𝑝2)
5
2

. 
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Since 𝑝 =
𝑑𝑦

𝑑𝑥
 and 𝑞 =

𝑑𝑝

𝑑𝑥
, it is seen that this equation is written in terms of the 

first and second derivatives of 𝑦(𝑥), and so the simple Euler-Lagrange equation does 
not suffice. In this case, we may use the Euler-Poisson equation, which when the 
functional contains second order derivatives may be written asm 

𝜕𝑍

𝜕𝑦
−

𝑑

𝑑𝑥
(

𝜕𝑍

𝜕𝑝
) +

𝑑2

𝑑𝑥2
(

𝜕𝑍

𝜕𝑞
) = 0. 

As an example, let us find the shape of a cantilever beam under a uniform 
distributed load, by applying the principal of minimum (total) potential energy. This 
principle states that the total potential energy for such a system is a minimum with 
respect to all small displacements that satisfy the given boundary conditions.  

In this example, the external force is the familiar gravitational force. The internal 
forces arise from strains within the beam. The total potential energy has two 
components: elastic strain energy and gravitational potential energy. 

As before, the elastic strain energy comes from ∫
𝑑𝑠

𝑅2, which for a beam with 

bending stiffness 𝐸𝐼 may be obtained from ∫
𝐸𝐼

2

𝑞2𝑑𝑥

(1+𝑝2)5/2. As far as the gravitational 

potential energy is concerned, it must be first realized that when the beam is 
deflected, there is a loss in potential energy due to the external, uniform distributed 

load 𝜇, which may be written as  − ∫ 𝜇𝑦𝑑𝑠 = − ∫ 𝜇𝑦(1 + 𝑝2)1/2𝑑𝑥. Therefore, the 
beam total potential energy will be given by 

∫[ 
𝐸𝐼

2

𝑞2

(1 + 𝑝2)
5
2

− 𝜇𝑦(1 + 𝑝2)
1
2 ] 𝑑𝑥. 

By assuming that the beam deflection is small, we can neglect second degree 
terms in 𝑝 and write the total potential energy as 

∫ (
𝐸𝐼

2
𝑞2 − 𝜇𝑦) 𝑑𝑥. 

Then, the Euler-Poisson equation for this integral, with the functional 𝑍 given by 
𝐸𝐼

2
𝑞2 − 𝜇𝑦, reduces to  

𝐸𝐼
𝑑4𝑦

𝑑𝑥4
= 𝜇. 

This equation is known as the Euler-Bernoulli equation and describes the 
deflection of a uniform, static beam, under a distributed load. It is used widely in 
engineering practice, and tabulated expressions for the deflection for common beam 
configurations can be found in engineering handbooks.  

In the second part of Additamentum I, Euler deals additionally with the following 
topics: ‘The determination of the elastic curve by experiment’, ‘The unequal curvature 
of elastic laminas’, ‘Concerning the curvature of elastic laminas not naturally straight’, 

 
m For a derivation of this result see, for instance, Kot, M. A First Course in the Calculus of 
Variations. Student Mathematical Library, Volume 72. American Mathematical Society, 
Providence, Rhode Island, 2014, Chapter 4, p 69.  
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‘The curvature of elastic laminas at individual points arising from whatever forces 
acting’, ‘The curvature of elastic laminas arising from their own weight’, ‘Concerning 
the oscillatory motion of elastic laminas’, and the following sub cases of the latter: 
‘Oscillations of an elastic lamina with one end fixed to a wall’, ‘Oscillations of free 
elastic laminas’, ‘Oscillations of an elastic lamina fixed at both ends’, and ‘Oscillations 
of a lamina with each end fixed to a wall’. The difference between ends fixed and ends 
fixed to a wall, is that in the former, there are no resisting moments at the fixed points 
– the ends are simply pinned –, whereas in the former, there are resisting moments 
at the fixed points – the ends are clamped. These represent Euler’s tour de force on 
trying to exhaust applications of his elastica analysis.  

Here, we will only examine further the topic ‘The unequal curvature of elastic 
laminas’, to show the potential of Euler’s variational approach. Further discussion of 
this and other cases listed above can be found in Truesdell [8].  

The unequal curvature of elastic laminas  
The problem here is to find the curvature of elastic laminas with non-uniform flexural 

rigidity. This problem then becomes to find a minimum for ∫
𝑆𝑑𝑠

𝑅2 , where 𝑆 is the 

flexural rigidity which is now allowed to vary along the lamina. In this case, Euler 
applies the procedures laid down in Chapter 3 of the Methodus inveniendi. 

This development begins in § 41, where Euler writes 𝑑𝑆 = 𝑇𝑑𝑠, and as usual, 

𝑑𝑦 = 𝑝𝑑𝑥, 𝑑𝑝 = 𝑞𝑑𝑥, and among all the curves, in which ∫ 𝑑𝑥√1 + 𝑝2 is of the same 

magnitude, that must be determined, in which ∫
𝑆𝑞2𝑑𝑥

(1+𝑝2)5/2 must be a minimum, and 

recalling that 𝑅 =
(1+𝑝2)

3/2

𝑞
. 

As found earlier, the differential value associated with the integral ∫ 𝑑𝑥√1 + 𝑝2 
is  

 −𝑑.
𝑝

√1 + 𝑝2
.                                                                   (𝐼) 

However, it should be realized that in the previous case 𝑍 =
𝑞2

(1+𝑝2)5/2, whereas 

now 𝑍 =
𝑆𝑞2

(1+𝑝2)5/2. Here 𝑆 is the indeterminate magnitude that is present in the 

formula ∫ 𝑍𝑑𝑠  = ∫
𝑆𝑑𝑠

𝑅2  of the maximum and minimum. This indeterminate magnitude 

requires the application of the differential value of the second kind (see Chapter IV of 
the Methodus inveniendi). 

The differential value of the second kind is given by the expression 𝐷 below, 
which is found with the aid of expressions 𝐴, 𝐵, and 𝐶 as will be shown next. 

Firstly, a new variable 𝛱 = ∫[𝑍]𝑑𝑥 is introduced by Euler, where [𝑍] itself is a 

function of 𝑥, 𝑦, 𝑝. Here 𝛱 = ∫ 𝑑𝑥√1 + 𝑝2 denotes the arc of the curve, and, if some 

function of that were 𝑍, to find a curve for which ∫ 𝑍𝑑𝑥 may have a maximum or 
minimum value.      

In this case, 

𝑑𝑍 = 𝐿𝑑𝛱 + 𝑀𝑑𝑥 + 𝑁𝑑𝑦 + 𝑃𝑑𝑝 + 𝑄𝑑𝑞.                                     (𝐴) 
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Since 𝛱 = ∫[𝑍]𝑑𝑥, therefore, [𝑍] = √1 + 𝑝2, and 𝑑[𝑍] =
𝑝

√1+𝑝2
, and knowing 

that  

𝑑[𝑍] = [𝑀]𝑑𝑥 + [𝑁]𝑑𝑦 + [𝑃]𝑑𝑝,                                        (𝐵) 

then, [𝑀] = 0, [𝑁] = 0, [𝑃] =
𝑝

√1+𝑝2
 and [𝑄] = 0.  

Now since 𝑍 =
𝑆𝑞2

(1+𝑝2)5/2, then 𝑑𝑍 =
𝑞2𝑑𝑆

(1+𝑝2)5/2 + 𝑃𝑑𝑝 + 𝑄𝑑𝑞, which from (𝐴), 

and recognizing that 𝑑𝛱 = 𝑑𝑥√1 + 𝑝2, results in  

𝐿𝑑𝑥 =
𝑞2𝑑𝑆

(1 + 𝑝2)3
 

Now, the integral may be taken 

∫ 𝐿𝑑𝑥 = ∫
𝑞2𝑑𝑆

(1 + 𝑝2)3
, 

and, since,  

𝑉 = 𝐻 − ∫ 𝐿𝑑𝑥,                                                       (𝐶) 

therefore, 

𝑉 = 𝐻 − ∫
𝑞2𝑑𝑆

(1 + 𝑝2)3
. 

The differential value of the second kind is given by 

−𝑑. (𝑃 + [𝑃]𝑉) +
𝑑(𝑄 + [𝑄]𝑉)

𝑑𝑥
,                                       (𝐷) 

which, in this case, reduces to 

−𝑑𝑃 − 𝑑. [𝑃]𝑉 +
𝑑𝑄

𝑑𝑥
                                                 (𝐼𝐼). 

Because the two differential values (𝐼) and (𝐼𝐼) found above should be equal, 
this equation arises for the curve sought 

𝑑.
𝑝

√1 + 𝑝2
= 𝑑𝑃 + 𝑑. [𝑃]𝑉 −

𝑑𝑄

𝑑𝑥
, 

which once integrated gives 

𝛼𝑝

√1 + 𝑝2
+ 𝛽 = 𝑃 + [𝑃]𝑉 −

𝑑𝑄

𝑑𝑥
 

or 

𝛼𝑝

√1 + 𝑝2
+ 𝛽 =

𝐻𝑝

√1 + 𝑝2
−

𝑝

√1 + 𝑝2
∫

𝑞2𝑑𝑆

(1 + 𝑝2)3
+ 𝑃 −

𝑑𝑄

𝑑𝑥
. 
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Because the constant 𝐻 can be taken to be determined by the arbitrary constant 
𝛼, Euler obtains the differential equation for the curve sought as 

𝛼𝑝

√1 + 𝑝2
+ 𝛽 = 𝑃 −

𝑑𝑄

𝑑𝑥
−

𝑝

√1 + 𝑝2
∫

𝑞2𝑑𝑆

(1 + 𝑝2)3
. 

Subsequent integrations and further mathematical manipulations of this 
equation, finally results in 

𝑆

𝑅
= 𝛼 + 𝛽𝑥 − 𝛾𝑦. 

Euler then indicates that the quantity 𝛼 + 𝛽𝑥 − 𝛾𝑦 expresses the moment of the 
curving force, which must be equal to the flexural rigidity 𝑆, divided by the radius of 
osculation 𝑅. He then points out having fully vindicated Bernoulli’s result – referring 

to the Euler-Bernoulli formula ℳ =
𝐸𝐼

𝑟
 – and recognizing that “… the more difficult use 

of my formulas taken in this example has been made clear ...” 

Investigations by direct methods 
Inclusions of investigations by direct methods in a variational treatise may seem odd, 
however, Fraser [9] argues that this was an opportunity for Euler to publish these 
supplemental researches which were aimed at the theory of elasticity. 

Indeed, linked to the results presented in the last section, in § 44 of 
Additamentum I Euler presents an investigation by direct methods of a lamina with 
variable elasticity, to find the flexural rigidity 𝑆 at some place 𝑀 of an unequal 
elasticity lamina which is curved by the weight 𝑃 hanging down at the free extremity 
of the lamina.  He then found that that 𝑆 = 𝑃𝑅𝑥, where 𝑥 is the lever arm that extends 
horizontally from the extremity where the weight is hanging, to the vertical line 
projected down from 𝑀. This result is, indeed, confirmed by the variational method 
presented in the last section.   

Next, in § 45, by considering that the absolute elasticity is proportional to the 
width of the lamina, Euler then examines a triangular shape lamina like a tongue when 
a weight hangs down at the free extremity but was not able to find a general workable 
expression for the curvature.    

Vibrations of elastic laminas 
This is another investigation by direct methods considered by Euler in the second part 
of Additamentum I in the section ‘Concerning the oscillations of elastic laminas with 
the other end fixed to a wall’.   

This development begins in § 65, where, by equating the harmonic force acting 
on the lamina to the elastic restoring force, Euler finds a fourth order differential 
equation governing the vibratory motion of the lamina given by  

𝐸𝐼
𝑑4𝑦

𝑑𝑥4
=

𝑀

𝑎𝑓
𝑦, 

where 𝑀 is the weight of the elastic band, 𝑎 its length, and 𝑓 is the length of the simple 
isochronous pendulum. This is how Euler introduces the frequency of oscillation into 
the modeling. 

In a more modern notation, this equation may be written as 
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𝐸𝐼
𝑑4𝑦

𝑑𝑥4
= 𝜇𝜔2𝑦, 

where 𝜇 =
𝑀

𝑔𝑎
, is the mass per unit of length, 𝑔 is the gravity, and 𝜔 = √

𝑔

𝑓
 is the 

angular frequency. 
From this equation, Euler obtains an expression for the spatial solutions (mode 

shapes) of the vibrating band as 

𝑦 = 𝐴𝑠𝑖𝑛ℎ
𝑥

𝑐
+ 𝐵𝑐𝑜𝑠ℎ

𝑥

𝑐
+ 𝐶𝑠𝑖𝑛

𝑥

𝑐
+ 𝐷𝑐𝑜𝑠

𝑥

𝑐
, n 

where 𝐴, 𝐵, 𝐶 , 𝐷 are constants of integration which are determined from the 

boundary conditions. In this expression 𝑐 = (
𝐸𝐼

𝜇𝜔2)
1/4

 has units of length and 𝑐−1 is 

the wave number 𝛽. 
Applying the proper boundary conditions for the cantilever beam yields the 

following transcendental equation. There are multiples roots which satisfy this 
equation. A subscript is thus added. 

𝑐𝑜𝑠(𝛽𝑛𝑎)𝑐𝑜𝑠ℎ(𝛽𝑛𝑎) = −1. o 

Euler obtains the first four roots of this equation as 𝛽1𝑎 = 1.8751040818, 
𝛽2𝑎 =4.6940910795, 𝛽3𝑎 = 7,8547670321, 𝛽4𝑎 = 10,9955428716. 

The corresponding natural frequencies are 

𝜔1 = 𝛽1
2√

𝐸𝐼

𝜇
=

3.5160

𝑎2
√

𝐸𝐼

𝜇
, … 

4. Final Comments 

Levien [2] demonstrates the pervasiveness of the elastica solution through various 
examples. 

• It appears in another shape of the solution of a fundamental physics problem 
– the capillary. In 1807, Laplace had obtained an equation equivalent to 

Euler’s result 
𝑆

𝑅
= 𝛼 + 𝛽𝑥 − 𝛾𝑦 deduced above, for the curvature of the 

surface of a fluid trapped between two vertical plates. 

• The differential equation for the elastica, expressing curvature as a function 
of arclength, is equivalent to those of the motion of the pendulum, as worked 
out by Kirchhoff in 1859 – the differential equation for the shape of the 
elastica is mathematically equivalent to that of the dynamics of a simple 
swinging pendulum. 

• Despite the equation for the general elastica being published as early as 1695, 
the curves had not been accurately plotted until Max Born’s 1906 PhD thesis. 
Born also constructed an experimental apparatus using weights and dials to 

 
n In fact, Euler gives a less general equation as 𝑦 = 𝐴𝑒

𝑥

𝑐 + 𝐵𝑒−
𝑥

𝑐 + 𝐶𝑠𝑖𝑛
𝑥

𝑐
+ 𝐷𝑐𝑜𝑠

𝑥

𝑐
. 

o In fact, Euler replaces this equation by 𝑒(𝛽𝑛𝑎) =
−1±𝑠𝑖𝑛(𝛽𝑛𝑎)

𝑐𝑜𝑠(𝛽𝑛𝑎)
. 
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place the elastic band in different endpoint conditions and used photographs 
to compare the equations to actual shapes. 

 
Figure 6: Born’s experimental apparatus for measuring the elastica. (Source: Ref. [2]) 

 

• Influence on modern spline theory: mechanical splines made of wood or 
metal have long been an inspiration for the mathematical concept of spline 
(and for its name). Schoenberg’s justification for cubic splines in 1946 was a 
direct appeal to the notion of an elastic strip. His main contribution was to 
define his spline in terms of a variational problem closely approximating the 
minimization of potential energy adopted in the elastica solution. 

• The arrival of the high-speed digital computer created a strong demand for 
efficient algorithms to compute the elastica, particularly to compute the 
shape of an idealized spline constrained to pass through a sequence of control 
points. 

As Levien [2] points out, “… the elastica, having been present at the birth of the 
variational calculus, also played a major role in the development of another branch of 
mathematics: the theory of elliptic functions. Even as the quadratures of these simple 
curves came to be revealed, analytic formulae for their lengths remained elusive. The 
functions known by the first half of the 18th century were insufficient to determine 
the length even of a curve as well-understood as an ellipse …” The closed-form 
solutions of the elastica, worked out in the 1880s, rely heavily on Jacobi elliptic 
functions. Nonetheless, elliptic functions are rarely used today for computation of 
elastica, in favor of numerical methods. To this end, simple 4th-order Runge-Kutta 
differential equation solver can be used due to its good convergence and efficiency 
and simple expression in code. “… Even so, Jacobi elliptic functions are now part of 
the mainstream of special functions, and fast algorithms for computing them are well-
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known. Elliptic functions are still the method of choice for the fastest computation of 
the shape of an elastica …” 

Finally, as revealed by D’Antonio [3], Euler’s work on elastic curves has been 
extended to study the elastic properties of the DNA molecule by considering it as a 
symmetric elastic rod. The unstressed DNA molecule has the form of a double helix 
with a twist angle of approximately 34o. If one end of the DNA molecule is twisted, an 
elastic strain is induced which tends to untwist it to the equilibrium configuration, e.g., 
a figure of eight. 

Note: this historical sketch is based on primary sources (and their annotated English 
translations), but also draws heavily on secondary sources, all listed in the References.  
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