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Euler and the Legendre Polynomials

Abstract

In this note we will present how Euler’s investigations on various different
subjects lead to certain properties of the Legendre polynomials. More
precisely, we will show that the generating function and the difference
equation for the Legendre polynomials was already written down by Euler
in at least two different papers. Furthermore, we will demonstrate that
some familiar expressions for the Legendre polynomials are corollaries of
the before-mentioned works. Finally, we will show that Euler’s ideas on
continued fractions lead to an integral representation for the Legendre
polynomials that seems to be less generally known.

1 Introduction

The Legendre polynomials occur frequently at various places in physics. They
were introduced by Legendre (1752-1833) in his paper “Recherches sur l’attraction
des sphéröıdes homogènes” [11] (“Researches on the attraction of homogeneous
spheroids”) in his study of the gravitational potential expressible as:

1

|x− x′|
=

1√
r2 − 2rr′ cos(β) + (r′)2

=
∞∑
n=0

r′n

rn+1
Pn(cos(β)),

where r and r′ are the lengths of the vectors x and x′, respectively, β is the
angle between those two vectors, and Pn(t) denotes a polynomial of degree n
in t. They are also interesting from a mathematical viewpoint, because they
exhibit a system of complete and orthogonal polynomials.

Nowadays, the n-th Legendre polynomial, Pn(t), is often introduced as the
coefficient a Taylor series. We have:

1√
1− 2xt+ x2

:=

∞∑
n=0

Pn(t)x
n. (1)

Aside from Legendre’s original definition and the more modern (1), there are
many ways to define the Legendre polynomials and hence as many different
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explicit formulas for them. In this note we will first use their definition as
solutions of the following difference equationa:

(n+ 1)Pn+1(t) = (2n+ 1)tPn(t)− nPn−1(t), for n ∈ N0. (2)

Requiring that P0(t) = 1 and P1(t) = t this equation defines all Legendre
polynomials uniquely. The first Legendre polynomials are seen in Table 1 below.

n Pn(t)

0 1

1 t

2 1
2(3t

2 − 1)

3 1
2(5t

3 − 3t)

4 1
8(35t

4 − 30t2 + 3)

5 1
8(63t

5 − 70t3 + 15t)

6 1
16(231t

6 − 315t4 + 105t4 − 5)

7 1
16(429t

7 − 693t5 + 315t3 − 35t)

Table 1: The first Legendre polynomials for small values of n.

We will show that (2) occurs as a special case of more general formulas
in some papers written by Euler (1707-1783). Those papers include “Specula-
tiones super formula integrali

∫
xndx√

aa−2bx+cxx
, ubi simul egregiae observationes

circa fractiones continuas occurrunt” [5] (E606: “Speculations about the inte-
gral formula

∫
xndx√

aa−2bx+cxx
, where at the same time extraordinary observations

on continued fractions occur”), “Theorema maxime memorabile circa formulam
integralem

∫ ∂ϕ cosλϕ
(1+aa−2a cosϕ)n+1 ” [6] (E672: “A most memorable theorem on the

integral formula
∫ ∂ϕ cosλϕ

(1+aa−2a cosϕ)n+1 ”), “Disquitio coniecturalis super formula

integrali
∫ ∂ϕ cos iϕ

(α+β cosϕ)n ” [7] (E673, “A conjectural investiagtion on the integral

aLater, in 4, we will also use their definition as coefficients of a generating function.
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formula
∫ ∂ϕ cos iϕ

(α+β cosϕ)n ”), “Demonstratio theorematis insignis per coniecturam

eruti circa intagrationem formulae
∫ ∂ϕ cos iϕ

(1+aa−2a cosϕ)n+1 ” [8]b (E674: “Proof of

the extraordinary theorem that had been found by conjecture on the integral for-
mula

∫ ∂ϕ cos iϕ
(1+aa−2a cosϕ)n+1 ”) and “Specimen transformationis singularis serierum”

[9] (E710: “A specimen of a singular transformation of series”). Whereas the
representation in the first paper seems to be less familiarc, the one in the re-
maining papers can be reduced to the integral:

Pn(t) =
1

π

π∫
0

(
t+

√
t2 − 1 cosφ

)n
dφ, (3)

which was given by Laplace (1749-1827) in his work “Traité de mécanique
céleste” [13] (“Treatise on celestial mechanics”) and is also attributed to him in
the preface to Volume 16,2 of Series 1 of Euler’s Opera Omnia ([10]) . Hence
we refer to (3) as the Laplace representation.

We will consider this representation first (see Section 2), before moving on
to the less familiar one (see Section 3).

2 Euler and the Laplace Representation for the Leg-
endre Polynomials

In the papers [6], [7], [8] and [9] Euler considered the family of integrals

An(a, i) :=

π∫
0

dφ cos(iφ)

(1 + a2 − 2a cos(φ))n
, (4)

about which he proved three main resultsd. First, he found an explicit formula
for the integrals in (4). Secondly, he discovered a functional equation satisfied
by the family of integrals. And finally, he stated a difference equation (in n) for
them. We will discuss each result separately, stating it and showing how it can
be applied to the Legendre polynomials.

The difference equation of interest for us was given by Euler in § 74 of [7]
as follows:

bThe papers [6], [7], [8] were essentially part of a single work within the book “Institutionum
calculi integralis”, Volume 4.

cIt is not listed in the modern table of series and integrals [14] for example.
dIn this formula, i denotes an integer and is not to be confused with

√
−1.
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n(n− 1)(1− aa)2
∫

dφ cos(iφ)

∆n+1

= (n− 1)(2n− 1)(1 + aa)

∫
dφ cos(iφ)

∆n
+ (ii− (n− 1)2)

∫
dφ cos(iφ)

∆n−1
,

where Euler understood the integrals to be taken from 0 to π and used the
abbreviation ∆ = 1− 2a cos(φ) + a2.

Using the notation we introduced in (4), Euler’s difference equation reads
as follows:

n(n− 1)(1− a2)2 ·An+1(a, i)

= (n− 1)(2n− 1)(1 + a2) ·An(a, i) + (i2 − (n− 1)2) ·An−1(a, i).

For i = 0, defining An(a, 0) := An(a) and simplifying the equation, we arrive
at:

n(1− a2)2 ·An+1(a) = (2n− 1)(1 + a2) ·An(a)− (n− 1) ·An−1(a).

After an index shift n 7→ n+ 1, this equation reads:

(n+ 1)(1− a2)2 ·An+2(a) = (2n+ 1)(1 + a2) ·An+1(a)− n ·An(a).

To simplify this equation even further, we need to reverse Euler’s introduction
of the letter a that he made in [7]. There, he started from the integral:∫

dφ cos(iφ)

(α+ β cos(φ))n
.

The integrals we denoted by An(a, i) in (4) arise from this by writing α = 1+a2

and β = −2a, as Euler also did in § 42 of [7]. Therefore, the previous difference
equation can also be expressed this way:

(n+ 1)(α2 − β2) ·An+2(a) = (2n+ 1)α ·An+1(a)− n ·An(a).

Thus, setting α = x and β =
√
x2 − 1 and, for the sake of brevity, writing

simply An(x) instead of An(a), we have:

(n+ 1) ·An+2(x) = (2n+ 1)x ·An+1(x)− n ·An(x),
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which is the difference equation for the Legendre polynomials (2). Moreover,
we have An+1(x) = πPn(x), since by direct calculation:

A1(x) =

π∫
0

dφ

x+
√
x2 − 1 cosφ

= π = π · P0(x),

provided x ∈ [−1, 1]. Further, with the same restrictions on x,

A2(x) =

π∫
0

dφ

(x+
√
x2 − 1 cosφ)2

= π · x = π · P1(x).

Therefore, we conclude that

Pn(x) =
1

π

π∫
0

dφ

(x+
√
x2 − 1 cos(φ))n

,

which already looks similar to Laplace’s representation (3).
To derive the Laplace integral representation for the Legendre polynomials

from the last equation, we need a functional equation found by Euler for the
integrals An(a, i). In § 21 of [9] Euler proved the formulae:(

n+ i

i

)
(1− aa)−n

∫
∆ndφ cos(iφ)

=

(
−n− 1 + i

i

)
(1− aa)n+1

∫
∆−n−1dφ cos(iφ), (5)

where ∆ = 1 − 2a cos(φ) + a2 and the integrals are understood to be taken
from 0 to π.

We are again interested in the case i = 0, in which the binomial coefficients
in (5) become = 1. After the same substitutions we made earlier to introduce
the letter x instead of a, in our notation Euler’s equation reads:

A−n(a) = An+1(a),

where we used that by the previous substitutions 1−a2 = α2−β2 = x2− (x2−
1) = 1. Combining this with the fact that An+1(a) = π · Pn(x), we also have
A−n = π · Pn(x). Hence by the definition of An(a), we also have:

eEuler stated the same formula in his papers ([6], [7], [8]) without a proof in the first two
papers and also remarked himself that the formula was conjectural at that point. The first
proof was given by Euler in [8].
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Pn(x) =
1

π

π∫
0

(x+
√
x2 − 1 cos(φ))ndφ,

which is (3).

Therefore, using Euler’s formulas, we were also able to prove the formula

π∫
0

(x+
√

x2 − 1 cos(φ))ndφ =

π∫
0

(x+
√

x2 − 1 cos(φ))−n−1dφ, (6)

a formula attributed to Jacobi (1854 - 1851) in [10], who actually also proved
(5) in his paper “Über die Entwickelung des Ausdrucks (aa−2aa′[cosω cosφ+

sinω sinφ cos(ϑ − ϑ′)] + a′a′)−
1
2 ” [12] (“On the expansion of the expression

(aa− 2aa′[cosω cosφ+sinω sinφ cos(ϑ−ϑ′)]+ a′a′)−
1
2 ”). But the argument

can be made that Euler could also have proven it, if he had the intention. For,
his functional equation (5) is much more general than (6). Furthermore, (5)
is a special case of the Euler transformation for the hypergeometric series, i.e.,
the formula

2F1(a, b, c;x) = (1− x)c−a−b
2F1(c− a, c− b, c;x),

which Euler proved in § 9 of [9]. Here, 2F1 is the Gaussian hypergeometric
series. Therefore, (6) can be understood as a special case of a certain property
of the Gaussian hypergeometric function.

For the sake of completeness, we also state an explicit formula that Euler
gave for the integrals An(a, i). The formula reads as follows (see, e.g., § 43 in
[7]):

π∫
0

dφ cos(iφ)

(1 + aa− 2a cos(φ))n+1
=

πai

(1− a2)2n+1
· V,

where

V =

(
n+ i

i

)
+

(
n+ i

i+ 1

)(
n− i

1

)
a2 +

(
n+ i

i+ 2

)(
n− i

2

)
a4 + · · ·

While Euler himself noted in [6] and [7] that the formula for V was conjectural,
he gave a proof in [8].
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3 Euler’s other Integral Representation

As mentioned in the introduction, the other integral representation for the Leg-
endre polynomials originates in Euler’s paper [5], a paper originally devoted to
continued fractions. Having shown in his papers “De fractionibus continuis ob-
servationes” [1] (E123: “Observations on continued fractions”) and “Methodus
inveniendi formulas integrales, quae certis casibus datam inter se teneant ra-
tionem, ubi simul methodus traditur fractiones continuas summandi” [4] (E594:
“A method to find integral formulas which in certain case are in a given ratio to
each other, where at the same a method is given to sum continued fractions”)
how homogeneous difference equations with linear coefficients can be solved by
means of integrals, in [5], Euler applied his theory to the family of integrals

G(n) :=

b+
√

b2−a2c
c∫

b−
√

b2−a2c
c

xndx√
a2 − 2bx+ cx2

and showed that those integrals satisfy the equation:

na2 ·G(n− 1) = (2n+ 1)b ·G(n)− (n+ 1)c ·G(n+ 1).

Specializing to the case a = c = 1 and writing t for b, this equation reduces
to the difference equation for the Legendre polynomials (2) such that we can
conclude

C(t) · Pn(t) =

t+
√
t2−1∫

t−
√
t2−1

xndx√
1− 2xt+ x2

.

C(t) is a function independent of n that we have to determine.
To do this, we evaluate the integrals for n = 0 and n = 1 explicitly. By a

formal calculation, we have:

t+
√
t2−1∫

t−
√
t2−1

x0dx√
1− 2xt+ x2

= log(−1)

and
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t+
√
t2−1∫

t−
√
t2−1

x1dx√
1− 2xt+ x2

= log(−1) · t.

Hence, it turns out that the function C(t) is actually a constant. Unfortunately,
log(−1) is not uniquely defined; we have to choose a specific branch of the
complex logarithm. Thus, if we write

Pn(t) =
1

log(−1)
·
t+

√
t2−1∫

t−
√
t2−1

xndx√
1− 2xt+ x2

, (7)

this equation gives us the correct formula, as long as we do not care about the
ambiguous meaning of the symbol log(−1). If we want to avoid this ambiguity,
we can use the indefinite integral∫

xndx√
1− 2xt+ x2

= Pn(t) artanh

(
x− t√

1− 2xt+ x2

)
+Qn(x, t)

√
1− 2xt+ x2 + C

where Qn is a polynomial in x and t and C is a constant of integration. This
formula can be proved by induction and the difference equation for the Leg-
endre polynomials (2). Note that we do not need to know the polynomial Qn

explicitly, since from the boundaries of integration in the previous equation we
have Qn(x, t)

√
1− 2xt+ x2 = 0.

4 Another Approach leading to similar Insights

As seen in the introduction, the Legendre polynomials can also defined as co-
efficients of a generating function (see (1)). In this section we intend to show
that Euler was led to the aforementioned generating function and (2) in his
investigations in the papers “Observationes analyticae” [2] (E326: “Analytical
Observations”) and “Varia artificia in serierum indolem inquirendi” [3] (E551:
“Various Artifices to investigate the Nature of Series”). In both these papers,
Euler considered the general trinomials (a+bx+cx2)n for n ∈ N and a, b, c ∈ C
and was interested in the sequence of the coefficients of the power xn in the
expansion of those trinomials. Therefore, let us assume

(a+ bx+ cx2)n = an + · · ·+Bn · xn + · · ·+ cnx2n,
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where the coefficient Bn depends on the numbers a, b and c. From these
coefficients Euler then defined a Taylor series:

F (x) :=

∞∑
n=0

Bnx
n. (8)

The problem he solved in [2] and [3] isf: What is a closed expression for F (x)?
His answer to the problem (see, e.g., § 21 of [3]) reads:

F (x) :=
1√

1− 2bx+ (b2 − 4ac)x2
.

This expression bears close resemblance to the generating function for the Leg-
endre polynomials in (1). Indeed, writing t for b and setting b2 − 4ac = 1 in
Euler’s solution, we arrive at the generating functions for the Legendre polyno-
mials.

Another of Euler’s important contributions in [3] was his discovery of the
difference equation between three consecutive Legendre polynomials, i.e, (2).
Euler gave the following relation among the consecutive expansion coefficients
of the Taylor series for F in (8) in § 22 of [3]:

r = bq +
n− 1

n
(bq − p).

Here, Euler suppressed the dependence of r, p, q on n and also on the letter b,
which is the same b as in explicit expression for the function F . But Euler told
us that, r being the n-th term in the sequence of coefficients, we obtain q from r
by writing n−1 instead of n in r and likewise, p from r by writing n−2 instead
of n in r. Thus, writing t instead of b and presenting everything in modern
fashion with indices, i.e., setting r = Bn(t), q = Bn−1(t) and p = Bn−2(t),
Euler’s difference equation becomes:

Bn(t) = t ·Bn−1(t) +
n− 1

n
(t ·Bn−1(t)−Bn−2(t)).

A simple calculation shows that this equation is equivalent to:

nBn(t) = (2n− 1)t ·Bn−1(t)− (n− 1)Bn−2(t).

After a shift n 7→ n + 1, this equation is to be seen to be identical to the
difference equation for the Legendre polynomials (2).

fThe case a = b = c = 1 gives coefficients comprising sequence A002426 in the Online
Encyclopedia of Integer Sequences (https://oeis.org/).
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As a side note we mention that, we can use Euler’s approach and define
the Legendre polynomials as follows:

Definition 1. The Legendre polynomial Pn(t) is given as the coefficient of the
power xn the expansion of the the following trinomial:

T (t, x) =

(
t− 1

2
+ xt+

t+ 1

2
x2

)n

.

This definition allows to calculate the Legendre polynomials, since, as we
saw above, for this particular choice of the letters a, b, c in the assumed form of
the expanded trinomial the function F in (8) reduces to the generating function
in (1).

5 Conclusion

In this note we showed that Euler’s discoveries lead to two integral representa-
tions for the Legendre polynomials. The first equation (3) that we derived from
Euler’s many investigations ([6], [7], [8] and [9]) is familiar and is attributed
to Laplace ([10]), whereas the other equation (7), which follows from Euler’s
formulas in ([5]), seems to be less known, since it does not appear in a standard
integral reference tables ([14]). Furthermore, we showed that Euler’s investiga-
tions in [2] and [3] contain the generating function for the Legendre polynomials
(1) as a special case and the difference equation (2) was stated explicitly in [3].
Additionally, the papers [5], [7] include it as a special case, the general equation
being (5). Unfortunately, it seems that Euler himself never made the connection
between his findings, although they all led him to (2).

Euler himself did not know the Legendre polynomials and their definition;
they were introduced by Legendre in [11] in his studies of the gravitational
potential after Euler’s death. Therefore, it is even more interesting that they
also appeared in Euler’s investigations, which were not motivated by a problem
in physics. Indeed, Euler’s papers rather seem like curious intellectual challenges
without any clear origin. Hence this should provide us with a lot of motivation
to consider more of Euler’s papers from a modern perspective. They might
even lead to new interpretations of familiar results and contain more insights
attributed to other mathematicians like (5), a formula attributed to Jacobi in
[10] who actually proved it later than Euler in [12].
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