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Euler and the Duplication Formula for the Gamma-Function

Alexander Aycock, Johannes-Gutenberg University Mainz
Staudinger Weg 9, 55128 Mainz

aaycock@students.uni-mainz.de

Abstract

We show how the formulas in Euler’s paper "Variae considerationes circa series
hypergeometricas" [4] imply Legendre’s duplication formula for the Γ-function. This
paper can be seen as an Addendum to [2].

1 Introduction

In [2], we focused on a function defined by Euler in [4] as:

ΓE(x) := a · (a + b) · (a + 2b) · (a + 3b) · · · · · (a + (x − 1)b) for a, b > 0, (1)

which we showed to be continueable to non-integer values of x via the expression:

ΓE(x) =
bx

Γ
( a

b

) · Γ
(

x +
a
b

)
. (2)

Here, Γ(x) means the ordinary Γ-function defined as:

Γ(x) :=
∞∫

0

e−ttx−1dt for Re(x) > 0. (3)

Equation (1) enabled us to determine the constant A in the asymptotic expansion for the
function ΓE found by Euler via the Euler-Maclaurin summation formula. The asymptotic
expansions reads:

ΓE(x) ∼ A · e−x · (a − b + bx)
a
b+x− 1

2 for x → ∞. (4)

We found the constant A to be

A =

√
2π

Γ
( a

b

) · e1− a
b · b

1
2−

a
b . (5)
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In this paper, we intend to use this result and more of Euler’s formulas from the same
paper to show that they imply the Legendre duplication formula for the Γ-function, i.e.,
the relation

Γ(x) =
2x−1
√

π
· Γ

( x
2

)
· Γ

(
x
2
+

1
2

)
. (6)

2 Euler’s other Functions

2.1 Euler’s Definition

Aside from the function ΓE, in his paper [4], Euler introduced two other related functions:

∆(x) = a · (a + 2b) · (a + 4b) · (a + 6b) · · · · · (a + (2x − 2)b),

Θ(x) = (a + b) · (a + 3b) · (a + 5b) · · · · · (a + (2x − 1)b).
(7)

As it was the case for ΓE (equation (1)), Euler’s definition is only valid for integer values
of x, but by using the ideas from [2], we could extend the definition to real numbers.

2.2 Asymptotic Expansions of these Functions

Furthermore, Euler also found asymptotic expansions for his functions ∆ and Θ. They
are:

∆(x) ∼ B · e−x · (a − 2b + 2bx)
a

2b+x− 1
2

Θ(x) ∼ C · e−x · (a − b + 2bx)
a

2b+x,
(8)

where B and C are constants resulting from the application of the Euler-Maclaurin
summation formula and the asymptotic expansions are valid for x → ∞.

2.3 Relation among the Constants

Euler was not able to find any of the constants A, B and C. But, using the general
relations among his functions ΓE, ∆ and Θ and the respective corresponding asymptotic
expansions, he found the following relations:

A =
B · C√

e
(9)

and

B = C · k ·
√

e (10)

with k = ∆
( 1

2

)
. As we will show in the next section, these relations imply the Legendre

duplication formula (equation (6)).
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3 Derivation of the Legendre Duplication Formula from
Euler’s Formulas

As Euler remarked himself in [4], equations (9) and (10) tell us that we only need to find
one of the constants A, B and C such that we can calculate the remaining two from the
first. Since we discovered the value A (equation (5)), we could do precisely that. But for
our task at hand, we need to find the value of k first.

3.1 Evaluation of the Constant k

To evaluate k = ∆
( 1

2

)
, we note that we just have to make the substitution b 7→ 2b in

equation (1) such that the expression for ΓE goes over into the expression for ∆ (equation
(8)) in equation (7). Making the same substitution in equation (2), we arrive the the
following expression for ∆(x):

∆(x) =
(2b)x

Γ
( a

2b

) · Γ
(

x +
a

2b

)
.

Therefore, for x = 1
2

k = ∆
(

1
2

)
=

(2b)
1
2

Γ
( a

2b

) · Γ
(

1
2
+

a
2b

)
. (11)

3.2 The Legendre Duplication Formula

Having found k, let us use equations (9) and (10) to find the Legendre duplication formula
(equation (6)). Substituting the value for C in (10) in for the value of C in (9), we arrive
at this equation:

A =
B2

∆
( 1

2

) e−1. (12)

Next, we note that since ∆(x) is obtained from ΓE(x) by the substitution b 7→ 2b, the
value of the constant B is obtained in the same way from A and reads:

B =

√
2π

Γ
( a

2b

) · (2b)
1
2−

a
2b · e1− a

2b . (13)

Thus, substituting the respective values for A (equation (5)), B (equation (13)) and k
(equation (11)), equation (12) becomes:

√
2π

Γ
( a

b

) · e1− a
b · b

1
2−

a
b =

( √
2π

Γ( a
2b )

· (2b)
1
2−

a
2b · e1− a

2b

)2

(2b)
1
2

Γ( a
2b )

· Γ
( 1

2 +
a

2b

) · e−1.
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Most terms cancel each other and after this equation simplifies to:

1
Γ
( a

b

) =

√
2π · 2

1
2−

a
b

Γ
( a

2b

)
· Γ

( 1
2 +

a
2b

) .

Finally, writing x instead of a
b and solving this equation for Γ(x), after a little simplification,

we arrive at the relation:

Γ(x) =
2x−1
√

π
· Γ

( x
2

)
· Γ

(
x + 1

2

)
,

which is the Legendre duplication formula for the Γ-function (equation (6)), as we wanted
to show.

4 Conclusion

In this note we showed that Legendre’s duplication formula, i.e., equation (6) follows
from Euler’s formulas found in his paper [4]. Indeed, the Legendre duplication formula
could also have been shown by Euler himself, if he had set this task for himself, as we
argued in more detail in [2]. Furthermore, Euler’s ideas that we explained in this and the
before-mentioned paper, can be generalized to show the multiplication formula for the
Γ-function, i.e, the formula

Γ(x) =
√

n
(2π)n−1 · nx−1 · Γ

( x
n

)
Γ
(

x + 1
n

)
Γ
(

x + 2
n

)
· · · · · Γ

(
x + n − 1

n

)
.

This formula is attributed to Gauss who stated and proved it in [5]. But it was given by
Euler (in different form, expressed via Beta functions) in [3], as we demonstrated in [1].
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