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On Lambert Series
And Their Significant Properties∗

1773

By Leonhard Euler

Translator: Sam Gallagher, Drexel University

24 Stonehenge Lane, Malvern, PA 19355

sjgallagher2@gmail.com

Translator’s Preface

Originally published in 1779, Euler’s "De Serie Lambertina" provides one of the early
examples of the Lambert W function, a special function used in the solution to certain
transcendental equations. Following the work of Johann Heinrich Lambert in 1759, who
discussed a series solution to the general polynomial in series, and then particularly the
solution of the general trinomial, Euler describes a symmetric form of the trinomial and
its series solution. Euler investigates the series’ special cases and general properties,
and its use in solving certain transcendental equations. He provides several proofs of
the validity of the series expansion to solve the trinomial, and in doing so he reveals
several notable series expansions of functions such as the natural logarithm and the
factorial.
I originally heard about the W function while doing some routine algebra, and became

interested in reading Euler’s original work. At the time, I knew no Latin, and put a fair
amount of effort into avoiding learning, but eventually I had exhausted my available
resources and decided that I would make the translation myself. This translation is the
result of several months of work, first learning the language, then actually translating.
I have tried to provide context for some of the more opaque elements of "De Serie
Lambertina" with endnotes, containing my own understanding of the content, which I
hope is enough to allow readers with a modest mathematical background to follow
along.
Learning the Latin language is no simple task. If it were not for the help of my brother

Charlie, starting me on the right path and giving me advice about translation, I cannot
imagine I would have had as much success as I did. In this process, I also met many
incredible people, who were kind enough to answer my many questions about Euler’s
writing. In particular, I would like to thank Sebastian Koppehel, the community on Latin
StackExchange, and the Latin subreddit. As well, I would like to thank the inimitable
Ian Bruce for setting an inspiring example for all those with an interest in translation
and historical mathematics and physics. Finally, I would like to thank Euleriana and the
Euler Archive for the opportunity to have my translation reviewed and published, so that
Euler’s work might reach a broader audience.

∗Euler, L. De serie Lambertina, plurimisque eius insignibus proprietatibus. Acta Academiae Scientarum Impe-
rialis Petropolitinae 1779, 1783, pp. 29-51. Enestrom number E532.
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§. 1.

With this name may be addressed that most notable series, by means of which the most
clever and sharp Lambert first described the expression of the roots of a trinomial equation
in Acta Helvetica Volum. III.1 This series however, if its terms may be altered for a moment,
can be expressed in the following form:

S = 1 + nv +
1

2
n(n+ α+ β)v2

+
1

6
n(n+ α+ 2β)(n+ 2α+ β)v3

+
1

24
n(n+ α+ 3β)(n+ 2α+ 2β)(n+ 3α+ β)v4

+ etc.

of which series the sum, S, thus depends on the resolution of the trinomial equation:

xα − xβ = (α− β)vxα+β , in order that S = xn

where, as that equation can have several roots, x should be understood to be the maximum
or minimum of the roots, as the circumstances require. Moreover, it seemed proper to pro-
vide this series with the present form, as the letters α and β may become interchangeable,
in such a way that whatever may be observed from one may also be valid for the other.

§. 2. The special properties of this series therefore depend on this: in order that its sum
may always be equal to the power of the exponent n, to which any determined quantity
is raised.2 From which, if for the value of n itself with whatever n = p the series sum is
taken to be = P ; and further for another value whatsoever n = q the series sum is taken
to be = Q; then, because we have P = xp and Q = xq, it shall be clear that P q = Qp,
or logP

logQ = p
q ; and in these circumstances, as long as the series sum for a unique case of

the exponent n is known, then the sums for any other values whatsoever can always be
assigned, supposing the remaining quantities α, β, and v keep their values. It is thus to be
desired most, in order that that significant property from the innate character itself of the
series may be shown.

§. 3. Here then, before all else, an important case ought to be noted, for which n = 0 and
the sum S = 1. Thus when we have S = xn, it is well known that in the case of n = 0, the
formula x

n−1
n reduces towards the hyperbolic logarithm of x, by which reason this case of

ours provides at once a summation worthy of remembering:3

log x = v +
1

2
(α+ β)v2 +

1

6
(α+ 2β)(2α+ β)v3

+
1

24
(α+ 3β)(2α+ 2β)(3α+ β)v4

+
1

120
(α+ 4β)(2α+ 3β)(3α+ 2β)(4α+ β)v5

+ etc.

But if then the sum of the series may now be explored, denoting it by = ∆, instead of
log x = ∆ one will have x = e∆, denoting by e the number whose hyperbolic logarithm is
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= 1. Thus, knowing this value ∆ for any number n the sum of the proposed series will
be en∆; from which, therefore, any number of other series may be shown; having been
proposed equal, evidently:

S = 1 + n∆ +
1

2
n2∆2 +

1

6
n3∆3 +

1

24
n4∆4 + etc.

Then certainly, because ∆ = log x, at the same time we have that equation:

eα∆ − eβ∆ = (α− β)ve(α+β)∆ , or

e−β∆ − e−α∆ = (α− β)v

From which equation one may also discover the value of ∆.

§. 4. In addition, the general sum of the proposed series may thus also be expressed, as,
if we let:

v =
x−β − x−α

α− β
The series sum would be S = xn, and in fact any values whatsoever may be assigned to
the letters α and β, if only it is noted, as we shall see, that when from several values taken
for x the same value for v can result, then for the sum S = xn either the maximum or the
minimum ought to be taken. With these things being generally noted, we may go through
some special cases, with the ratio of the letters α and β, by which the conception of our
series will be made moderately clear.
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Case I.
For which β = 0.

§. 5. Since the letters α and β are interchangeable, accordingly either α or β may disap-
pear. Hence let β = 0, and our series subsequently takes the form

S = 1 + nv +
1

2
n(n+ α)v2

+
1

6
n(n+ α)(n+ 2α)v3

+
1

24
n(n+ α)(n+ 2α)(n+ 3α)v4

+
1

120
n(n+ α)(n+ 2α)(n+ 3α)(n+ 4α)v5

+ etc.

whose sum therefore will be S = xn, as long as x is taken from the equation xα−1 = αvxα,
fromwhich comes xα = 1

1−αv and identically x = (1−αv)−1/α. With which case the Lambert
series now takes its most noteworthy form.

§. 6. Now if we make this exponent n vanish, this type of series will reduce to that of the
logarithm, such that

log x = v +
1

2
αv2 +

1

3
ααv3 +

1

4
α3v4 +

1

5
α4v4 + etc.

Thus using

x = (1− αv)−
1
α , we have log x = − 1

α
log(1− αv).

Make note however,

log(1− αv) = −αv − 1

2
α2v2 − 1

3
α3v3 − 1

4
α4v4 − etc.

A series which having been multiplied by with − 1
α gives the series just discovered.

4
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Case II.
For which β = α.

§. 7. This case is most notable, because the equation, from which the value of x should
be derived, is inconsistent, clearly: xα − xα = 0vx2α, or 0 = 0; to avoid this inconvenience
we take α = β + ω, with ω being infinitely small, and our equation becomes:

xβ+ω − xβ = ωvx2β+ω, or
xω − 1

ω
= vxβ+ω.

It is well known however that with ω vanishing one has x
ω−1
ω = log x, so that with this case

log x = vxβ+ω = vxα, which is an equation from which the value of x can be elicited.

§. 8. Moreover, with β having been set to β = α we arrive at the following series:

S = 1 + nv +
1

2
n(n+ 2α)v2 +

1

6
n(n+ 3α)2v3

+
1

24
n(n+ 4α)3v4 +

1

120
n(n+ 5α)4v5

+
1

720
n(n+ 6α)5v6 + etc.

a series which is equally most deserving of attention, because not only do the exponents
increase continuously, but in fact the quantities being raised themselves appear in an arith-
metic progression, a series of a sort scarcely considered by Geometers until now. Never-
theless we have learned here, that the sum of the series is S = xn, as long as the value
of x fits with this equation, namely: log x = vxα, although it is only possible to obtain this
value by approximation.

§. 9. Now if we further set n = 0, from what was shown before the following series is
deduced:

log x = v + αv2 +
32

6
ααv3 +

43

24
α3v4

+
54

120
α4v5 +

65

720
α5v6 + etc.

Therefore, letting log x = vxα, we have

xα = 1 +
21

1.2
αv +

32

1.2.3
α2v2 +

43

1.2.3.4
α3v3

+
54

1.2...5
α4v4 +

65

1...6
α5v5 + etc.

We set αv = u, as then α log x = uxα. Now let xα = y, so α log x = log y; consequently
our equation becomes log y = uy, for which reason we obtain this summation:

y = 1 +
21

1.2
u+

32

1.2.3
uu+

43

1.2.3.4
u3

+
54

1.2...5
u4 +

65

1...6
u5 + etc.

256

Gallagher: Euler's De Serie Lambertina, Translated from Latin to English Wit

Published by Scholarly Commons, 2021



In the case where u = log y
y .

§. 10. As in this series the exponents of the numbers are decreased from the numbers
themselves by unity, we reduce them in the following way to equality. Multiplying on both
sides by u and differentiating, it becomes

d log y

du
=

dy

ydu
= 1 +

22

1.2
u+

33

1.2.3
uu+

44

1.2.3.4
u3

+
55

1.2...5
u4 +

66

1...6
u5 + etc.

Where moreover we set log y = uy, then dyy = udy + ydu, from which we have dy
du = yy

1−uy ;
with whatever that sum may be = y

1−uy . Multiplying further both sides by u, and because
uy = log y we arrive at this most significant summation:

log y

1− log y
= u+

22

1.2
u2 +

33

1.2.3
u3 +

44

1.2.3.4
u4

+
55

1.2...5
u5 + etc.

Under the condition that u = log y
y .

§. 11. This last series merits attention on account of its elegance and utility, so we will
examine its unique properties more carefully. So, firstly it is evident, if we may assume u =
1 or u > 1, that the produced series is divergent; as in the general form nn

1.2...n the numerator
continually increases more than the denominator, and thus all terms in this way increase to
infinity, whose sign is that of the imaginary sum; that which through the formula u = log y

y
is clearly proven, since no number’s logarithm can come out greater than the number itself.
When however u is taken to be less than unity, that series sum most certainly is able to
produce a finite value, whenever of course the formula log y

y takes a finite value, that which
happens, when log y < 1, or y < e. However if it is assumed that y = e, such that we have
u = 1

e , our series still has an infinite sum, even though our terms continuously decrease,
and in this way finally vanish.

§. 12. In this however a notable series occurs at once, because, if u rises above 1
e only a

little, they eventually rise infinitely above the terms, which agrees well with those things,
which I formerly observed around the value of the product 1.2.3...n in Calculo Differentiali
p. 466.5 And if we also set T = nn

1.2...n , such that

log T = n log n− log 1− log 2− log 3. . . . . − log n

In the work just cited it is demonstrated that

log 1+ log 2 + log 3 + log 4. . . . . + log n

=
1

2
log 2π +

(
n+

1

2

)
log n− n+

1

12n
− 1

360n3
+

1

1260n5
− etc.
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from which follows the product itself

1.2.3....n =

√
2π × nn+ 1

2 × e
1

12n−
1

360n3 etc.

en

as long as we have

T =
1√
2nπ

· en−
1

12n+ 1
360n3−etc.

When therefore n is a very large number, all terms of our series become Tun = enun√
2nπ
, out

of which form it is clear, as soon as eu > 1, or u > 1
e , then this term becomes infinite; but

if however either eu = 1 or strictly < 1, or u < 1
e , then that term is lessened into nothing.

§. 13. We may illustrate this summation by a unique example, having set log y = 1
2 , as the

series sum becomes = 1; then however we have u = 1
2
√
e
, by which case therefore we have

1 = u+
22

1.2
u2 +

33

1.2.3
u3 +

44

1...4
u4 + etc.

Moreover with e = 2.71828, the values of this former series of terms will thus be found in
fractional decimals that I have copied:

u = 0.303269

2u2 = 0.183944

9

2
u3 = 0.125515

32

3
u3 = 0.090228

54

1.2.3.4
u4 = 0.066805

32.62

5
u6 = 0.050413

This series thus converges as slowly as possible, nevertheless to a total sum that is de-
termined not to exceed unity.
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On the Solution
of the equation log x = vxα

§. 14. Because for the second case, where β = α, the summation of our series depends on
the equation log x = vxα, then, for whatever value of v, the quantity x ought to be brought
out: before all else it is appropriate to observe, that twin values of x can correspond to
any one value of v. To show this we may make xα = y and αv = u, so that it has the
equality: log y = uy, or u = log y

y ; from which it is clear the number u cannot be positive,
unless we grant that y > 1. However, then we always have u < 1

e , according to which the
maximum value of the formula log y

y arises by assuming y = e in such a way that, whether y
is taken to be either bigger or smaller than e, u < 1

e is always produced. Thus is it clear,
that the series for the second case having been found cannot have a finite sum; as long as
u > 1

e , or v >
1
αe , accordingly v may be a positive quantity; for when it should have been

negative, the sum would have always been finite on account of the alternating sign.

§. 15. Hence it further follows, as often as we have u < 1
e , so often the value of y can

have two values: one of course greater than e, the other being less, and the same value
u = log y

y is produced in both cases. In just the same way, if we set either y = 2 or y = 4,
both sides produce u = log 2

2 . The same thing comes from the example, whether we set
y =

(
3
2

)3
= 27

8 , or y =
(

3
2

)2
= 9

4 , because both sides produce u = 8
9 log 3

2 . The same
thing further happens, whether we assume y =

(
4
3

)4 or y =
(

4
3

)3, since both sides give
u = 34

43 log 4
3 .

§. 16. To a pair of values of y to be found, let p and q be such values, by which it comes
about that u = log p

p = log q
q . We now set q = pr, and it is appropriate to make

log p

p
=

log pr

pr
=

log p+ log r

pr
,

or r log p = log p+log r, from which log p = log r
r−1 , and thus p = r

1
r−1 , and hence q = r

r
r−1 , for

which, so that more convenient formulas are returned, we make 1
r−1 , = m, such that r =

m+1
m , fromwhich both values of y, that we call p and q, will now be: either y = p =

(
m+1
m

)m,
or otherwise y = q =

(
m+1
m

)m+1; as from both sides is produced u = mm+1

(m+1)m log m+1
m .

§. 16.6 With this exponent this question of the highest importance arises: which of these
two values of y ought to be assigned to the sum of this expressed series:

y = 1 +
21

1.2
u+

32

1.2.3
uu+

43

1.2.3.4
u3 +

54

1.2...5
u4 + etc.

to the solution of which question let us assume first u = 1
e , so that both values of y

are equal to e; for nothing is uncertain from this case letting y = e. Certainly now, if
we should have u < 1

e , it’s clear that the sum of the series comes out smaller than e.
On account of which as for y we found two values, one greater, one lesser than e, it’s
evident that the lesser value must be taken for the sum of the expressed series. Thus if
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u = mm+1

(m+1)m log m+1
m , the value of y which ought to be assumed is y =

(
m+1
m

)m, which is
naturally always less than e, for otherwise, y =

(
m+1
m

)m+1, which is greater than e.

Theorem.

§. 17. If the quantities x and v so depend upon each other, such that log x = vx, and
moreover the values of x correspond to twin values of v, one greater and one lesser than
e, then in the following sums:

I.
xn − 1

n
= v +

n+ 2

1.2
v2 +

(n+ 3)2

1.2.3
v3 +

(n+ 4)3

1.2.3.4
v4 + etc.

II.
xn

1− log x
= 1 +

n+ 1

1
v +

(n+ 2)2

1.2
v2 +

(n+ 3)3

1.2.3
v3 +

(n+ 4)4

1.2.3.4
v4 + etc.

in place of all x the lesser value should be taken, which is clearly less than e. The rationale
for these two series is evident from the explanation of the second case: as they are found
by assuming α = 1 in [the series of] §8.

§. 18. The latter series is clearly produced by differentiation of the former; in fact, divid-
ing by dv and differentiating we arrive at

xn−1dx

dv
= 1 +

n+ 2

1
v +

(n+ 3)2

1.2
v2 +

(n+ 4)3v

1.2.3
v3 + etc.

Moreover letting v = log x
x , we have dv = dx

xx (1− log x), out of which

xn−1dx

dv
=

xn+1

1− log x
.

Therefore if here in place of n we write n− 1, this summation arises:

xn

1− log x
= 1 +

n+ 1

1
v +

(n+ 2)2

1.2
v2 +

(n+ 3)3v

1.2.3
v3 + etc.

which is our latter series itself.

§. 19. These two series moreover should be considered all the more deserving of at-
tention, because they are far simpler and more elegant than the general Lambert series;
and then above all, because no more distinct way can be seen to be evident to directly
demonstrate the truth of them. For though the verity of the Lambert series itself has now
been demonstrated: nevertheless the methods, by which the demonstration is supported,
cannot accommodate the case of the present series by any means, in which a particularly
significant paradox is observed, because one may fortify such a general proposition by a
demonstration, but nevertheless it cannot always be applied to any special case.

260

Gallagher: Euler's De Serie Lambertina, Translated from Latin to English Wit

Published by Scholarly Commons, 2021



§. 20. How the Lambert series can be derived from the trinomial equation

xα − xβ = (α− β)vxα+β ,

I will show on another occasion, where a similar solution was extended to a polynomial
of as high a degree as desired. Conversely, how the Lambert series is also able to be
developed into the trinomial equation, seems to be a far more difficult problem; hence it
would be valuable to have set forth such an analysis, and in order that the work may follow
more easily, I propose in advance the following problem.

Problem.
To demonstrate the agreement of a proposed Lambert series, which is known, with this

trinomial equation:
xα − xβ = (α− β)vxα+β .

Solution.

§. 21. Setting the sum of this series = S, indeed I assume here that that sum is equal to
a power of whatever kind, xn, as it only presses upon us to find the relationship between
the quantity x and the quantities which determine the series itself, which are α, β, and v.
As is easy to see, the fact that the sum S can be produced with such a form xn, can by
no means be had by such reasoning before demonstration, (because before all else this
ought to have been demonstrated). With this granted we may establish the reasoning in
the following way.

§. 22. In fact, having set S = xn, in the first place of the undetermined exponent n I put
the fixed value n = −α, so we obtain the following series:

x−α = 1− αv − 1

2
αβv2 − 1

6
α.2β(α+ β)v3

− 1

24
α.3β(α+ 2β)(2α+ β)v4

− 1

120
α.4β(α+ 3β)(2α+ 2β)(3α+ β)v5 − etc.

By similar reasoning, if we set n = −β, we arrive at the following series:

x−β = 1− βv − 1

2
βαv2 − 1

6
β.2α(β + α)v3

− 1

24
β.3α(β + 2α)(2β + α)v4

− 1

120
β.4α(β + 3α)(2β)2α)(3β + α)v5 − etc.
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§. 23. Now we subtract the former of these two series from the latter, and thus we
obtain that equation: x−β − x−α = (α − β)v, because apart from the second terms all
following clearly cancel each other. But if now we multiply that resulting equation by
xα+β , the assumed trinomial equation is produced

xα − xβ = (α− β)vxα+β .

§. 24. Therefore, provided that it is possible to demonstrate, that the sum of the Lambert
series is equal to the power n of any quantity x, which is independent of n, the preceding
Analysis would absolutely provide a sufficient proof. I will attempt to amend this defect
in the following problem.

Principal Problem.
To set forth the analytical operations, which may lead one directly towards under-

standing of the true sum of the Lambert series.

Solution.

§. 25. As the proposed Lambert series involves four quantities α, β, v and n, we imagine
the first three α, β and v as if they were constant and given, while the fourth nwe consider
as if it were variable; and in this way one may suppose the desired sum S as if it were some
function of the quantity n, as keeping with tradition we represent it with this notation:
S = Φ : n, so we let

Φ : n = 1 + nv +
1

2
n(n+ α+ β)v2

+
1

6
n(n+ α+ 2β)(n+ 2α+ β)v3

+
1

24
n(n+ α+ 3β)(n+ 2α+ 2β)(n+ 3α+ β)v4

+
1

120
n(n+ α+ 4β)(n+ 2α+ 3β)(n+ 3α+ 2β)(n+ 4α+ β)v5 + etc.

§. 26. Therefore as this equation must be true, whatever number we may write in the
place of n, we first set n− α in place of n and we obtain

Φ : (n− α) = 1 + (n− α)v +
1

2
(n− α)(n+ β)v2

+
1

6
(n− α)(n+ 2β)(n+ α+ β)v3

+
1

24
(n− α)(n+ 3β)(n+ α+ 2β)(n+ 2α+ β)v4

+
1

120
(n− α)(n+ 4β)(n+ α+ 3β)(n+ 2α+ 2β)(n+ 3α+ β)v5 + etc.
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And of course we may similarly obtain

Φ : (n− β) = 1 + (n− β)v +
1

2
(n− β)(n+ α)v2

+
1

6
(n− β)(n+ 2α)(n+ α+ β)v3

+
1

24
(n− β)(n+ 3α)(n+ α+ 2β)(n+ 2α+ β)v4

+
1

120
(n− β)(n+ 4α)(n+ α+ 3β)(n+ 2α+ 2β)(n+ 3α+ β)v5 + etc.

§. 27. We now subtract the former of these two series from the latter, and since for
terms of any order, by having pulled out a common factor, we would have

(n− β)(n+ λα)− (n− α)(n+ λβ) = (λ+ 1)n(α− β),

with this observation, having subtracted we will find

Φ : (n− β)− Φ : (n− α)

= (α− β)v +
2

2
(α− β)nv2 +

3

6
(α− β)n(n+ α+ β)v3

+
4

24
(α− β)n(n+ α+ 2β)(n+ 2α+ β)v4

+
5

120
(α− β)n(n+ α+ 3β)(n+ 2α+ 2β)(n+ 3α+ β)v5 + etc.

§. 28. Because in this series all terms contain the factor (α − β)v, by dividing by this we
reach this equation:

Φ : (n− β)− Φ : (n− α)

(α− β)v
= 1 + nv +

1

2
n(n+ α+ β)v2

+
1

6
n(n+ α+ 2β)(n+ 2α+ β)v3

+
1

24
n(n+ α+ 3β)(n+ 2α+ 2β)(n+ 3α+ β)v4 + etc.

a series which is the thing itself, as we noted with the nature of Φ : n, for the sum which is
to be substituted we arrive at this equation:

Φ : (n− β)− Φ : (n− α) = (α− β)vΦ : n.

§. 29. All this work therefore leads to this question: what sort of value of n should be
taken for Φ : n, in order that this equation is satisfied? It will soon be evident however,
even by brief examination, that it can be satisfied by such a substitution: Φ : n = Akn,
where indeed neither A nor k depend on n; then in fact we have

Φ : (n− α) = Akn−α and Φ : (n− β) = Akn−β .

Whence, substituting these values, the equation found will assume that form:

A(kn−β − kn−α) = (α− β)vAkn
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Which dividing by Akn transforms into this: k−β − k−α = (α − β)v; indeed if we were to
multiply throughout by kα+β and in place of k we would write x, we will have deduced
that trinomial equation first noted: xα − xβ = (α− β)vα+β .

§. 30. Therefore in this way it is most rigorously shown, that the sum of a Lambert series
must be expressed by such a formula, as undoubtedly S = Akn, or S = Axn, where in the
case of n = 0 the series sum must be made = 1, so clearly the letter A must be made = 1,
and the sum of the series itself is directly as is assigned: that is S = xn, as long as the
quantity x is drawn from that equation: xα − xβ = (α− β)vxα+β .

§. 31. One might object to this solution, perhaps contriving to satisfy the equation

Φ : (n− β)− Φ : (n− α) = (α− β)vΦ : n

by other means, aside from the value Φ : n = kn, which indeed cannot be denied, for these
types of equations generally admit several solutions. Certainly, while that value may be
sufficient, it absolutely satisfies the requirement, and precisely so, that neither A nor k are
dependent on n: nonetheless the same may also be confirmed from the principles of the
Analysis of the infinite in the following way.

§. 32. Since S = Φ : n is a function of n, with this variable quantity having been assumed,
from well-known principles it will be7

Φ(n− α) = S − αdS

dn
+
α2ddS

1.2.dn2
− α3d3S

1.2.3.dn3
+

α4d4S

1.2.3.4.dn4
− etc.

and in a similar way

Φ(n− β) = S − βdS

dn
+
β2ddS

1.2.dn2
− β3d3S

1.2.3.dn3
+

β4d4S

1.2.3.4.dn4
− etc.

these having been substituted we are led to that infinite differential equation:

(α−β)vS = (α− β)
dS

dn
− (αα− ββ)

ddS

1.2.dn2

+ (α3 − β3)
d3S

1.2.3.dn3
− (α4 − β4)

d4S

1.2.3.4.dn4
+ etc.

from which the quantity S may be derived.

§. 33. However, since in each of the terms of this equation the variable S takes up a single
dimension everywhere, it has been shown in the integral calculus, such an equation cannot
otherwise be satisfied, except for by a value of this sort: S = Ceλn: this having been
settled, if we set eλ = k, it becomes S = Ckn, precisely as we previously had assumed,
for now, we consider it appropriate to say, nothing further can be desired concerning the
Lambert series.8
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More Useful confirmation of the given Solution.

§. 34. If we only consider the condition just found, that we must have

Φ : (n− β)− Φ : (n− α) = (α− β)vΦ : n,

certainly it can be satisfied in a much more general way. In particular if each of the letters
p, q, r, s etc. are roots of this equation: x−β − x−α = (α− β)v, it is clear that the value:

Φ : n = Apn +Bqn + Crn +Dsn + etc.

satisfies the same condition. Thus the value of the sum S of the Lambert series will
obviously be contained in this formula, of which since it was defined and it only depends
upon the quantities α, β, v, and n, it will be sought for, the way those indeterminate letters
A, B, C, D etc. may be defined, in order that they make S = Φ : n.

§. 35. Here, however, immediately two cases present themselves, wherein either a single
root determines the sum S, or in fact all the roots coincide, which two cases therefore are
worth examining carefully. Wherein first I observe, if all the roots p, q, r, s, etc. are to
be used at the same time, that they ought to be applied without doubt with equal regard,
since there is no reason, why preference may be granted to any of them: For this reason
let the coefficients A, B, C, D, etc. be equal between themselves, and so

S = A(pn + qn + rn + sn + etc.);

therefore since with the case n = 0 it must make S = 1, if the number of roots is set = i,
with this case it is S = Ai, thus A = 1

i .

§. 36. Additionally, however, our series is so composed, that taking v = 0 also produces
in our sum S = 1. Now in fact with the case v = 0 our equation becomes x−β − x−α = 0,
or xα−β − 1 = 0, whose only root is = 1, and the sum of all the roots is always = 0, the
only exceptional case being where α−β = 1. Thus as long as it is assumed n = 1, we have
S = 1

i (p+ q + r + s+ etc.) = 0, since the sum is still = 1, so that hypothesis opposes the
truth.

§. 37. The same issue also shines through most clearly, if we set n = 1 in general, as you
see with which case we let S = 1

i (p + q + r + s + etc.), where p + q + r + s + etc. is the
sum of the roots of the trinomial equation

x−β − x−α = (α− β)v

and so it will be equal to the coefficient of the second term, after the equation has been
reduced in order, which frequently fails it, the series sum also being equal to nothing; which
since it contradicts the truth, it has been demonstrated sufficiently, that not all roots of
the trinomial equation can agree with the sum S to be established.
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§. 38. Therefore with this case remote, in which all the roots may have come out to be
equal, the first case remains, wherein the sum S is determined by only one of those roots,
as in the solution we had assumed. It is clear moreover that the root shall be either the
maximum or the minimum: here in fact the same distinction comes about, in the solution
of all equations from recurrent series9, as likewise from that method only one root of the
equation, either the maximum or minimum, is typically found, as long as the solution we
have given already has been put together beyond any doubt. However, on the occasion of
the method which we have used, it would do no harm to add the following problem.

Problem.
To find all functions of the variable quantity n, with which the general condition may be

satisfied:
Φ : n = aΦ : (n+ α) + bΦ : (n+ β) + cΦ : (n+ γ) + etc.

Solution.

§. 39. But by the reasoning we found in the preceding problem, it will be easily seen, in
order to satisfy that condition, we ought to set Φ : n = Akn, where A and k are constant
quantities. Moreover, making this substitution produces the following equation:

Akn = Aakk+α +Abkn+β +Ackn+γ +Adkn+δ + etc.

which dividing by Akn gives

1 = akα + bkβ + ckγ + dkδ + etc.

where k denotes some root of this equation, of which precisely each one of the roots
together are sufficient for the previously written condition. One may even combine these
different solutions with each other in whatever way. So if p, q, r, s etc. should be roots of
this equation, it is sufficient for our problem in general, to have set

Φ : n = Apn +Bqn + Crn + etc.

where the letters A, B, C, D etc. inside remain our choice; and this is the general so-
lution to the problem of this analysis, something which will often be able to bring forth
noteworthy use.

§. 40. But let us return to the Lambert series, and also let us show, in what way these
innumerable other series may be shown to be connected.
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Problem.
Let a Lambert series be proposed, which for brevity we give in the form below:

S = 1 +Av +Bv2 + Cv3 +Dv4 + etc.

of which it has been noted the sum = xn, where it should be assumed for x either the
maximum or the minimum root of this trinomial equation: xα − xβ = (α − β)vxα+β , from
there that the innumerable other series are made connected, whose sum may be equally
so assigned.

Solution.

§. 41.10 Therefore these letters A, B, C, D etc. for the sake of brevity have been set to
the following forms:

A = n;B =
1

2
n(n+ α+ β);C =

1

6
n(n+ α+ 2β)(n+ 2α+ β);

D =
1

24
n(n+ α+ 3β)(n+ 2α+ 2β)(n+ 3α+ β);

E =
1

120
n(n+ α+ 4β)(n+ 2α+ 3β)(n+ 3α+ 2β)(n+ 4α+ β)

etc.

With these values having thus been noted one may establish twowell known principal ways
from which place the other series ought to be established: that is, one by differentiation,
the other by integration.

§. 42. Since if we let (α− β)v = x−β − x−α we will have

(α− β)dv = −βx−β−1dx+ αx−α−1dx

or
(α− β)dv =

dx(αxβ − βxα)

xα+β+1
;

hence therefore if our series is differentiated, and we divide by dv, we are led to the
following summation:

(α− β)nxn+α+β

αxβ − βxα
= A+ 2Bv + 3Cvv

+ 4Dv3 + 5Ev4 + 6Fv5 + etc.

§. 43. We also could have multiplied the proposed series by any power of v before, as is
found by differentiation; just as that to be multiplied by vλ, so we have

vλxn = vλ +Avλ+1 +Bvλ+2 + Cvλ+3 +Dvλ+4 + etc.
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this differentiated series also divided by dv gives

λvλ−1xn + nvλxn−1 dx

dv
= λvλ−1 + (λ+ 1)Avλ

+ (λ+ 2)Bvλ+1 + (λ+ 3)Cvλ+2

+ (λ+ 4)Dvλ+3 + (λ+ 5)Evλ+4 + etc.

dividing which expression by vλ−1 gives the summation:

λxn + nvxn−1 dx

dv
= λ+ (λ+ 1)Av

+ (λ+ 2)Bv2 + (λ+ 3)Cv3 + (λ+ 4)Dv4 + etc.

by which way it is clear
nxn−1dx

dv
=

(α− β)nxλ+α+β

αxβ − βxα

with which substituted value that sum becomes

= λxn +
nxn+α − nxn+β

αxβ − βxα

=
xn

αxβ − βxα
(
(λα− n)xβ − (λβ − n)xα

)
.

§. 44. But if now we multiply this series again by vλ, and we differentiate again, innumer-
able new series are discovered, whose summations again follow the rule. And repeating in
this way, one may continue further; however to follow this labor onwards is unnecessary.

§. 45. In a similar way by integration, we may draw out new series. If we multiply the
proposed by

dv =
αx−α−1dx

α− β
− βx−β−1dx

α− β
,

and we integrate both sides, we come to the following summation:

αxn−α

(α− β)(n− α)
− βxn−β

(α− β)(n− β)
= v +

1

2
Avv

+
1

3
Bv3 +

1

4
Cv4 +

1

5
Dv5 + etc.+ const.

where to determine such a constant, the case v = 0 is considered, such that x = 1, and
hence the constant = n

(n−α)(n−β) .

§. 46.11 We could have also multiplied by vλ before integration; in truth with this way
we have fallen into excessively laborious calculations, from which it is enough for us, to
have uncovered a source, out of which innumerable new series of whatever kind may be
drawn.12
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NOTES

1. Johann Heinrich Lambert (1728-1777) published "Observationes Variae in Mathesin Puram" (Various observa-
tions on pure mathematics) in Acta Helvetica Physico-Mathematico-Botanico-Medica Vol. III, 1758 (pp. 128-
168). Within the paper he considers a general series solution for a real root of a polynomial of any degree. Here
I will try to reproduce his reasoning.
In §29 he considers the general polynomial,

0 = xm −Axm−1 +Bxm−2 − ...+Hx2 − Ix+K,

where x = α, β, γ, δ, etc are them roots of the equation.
Take the sums of the roots, their squares, their cubes, and so on, and denote these sums by Σr for the sum

of roots, Σr2 for the sum of the squares of the roots, etc. So,

α+ β + γ + δ + ... = Σr

α2 + β2 + γ2 + δ2 + ... = Σr2

α3 + β3 + γ3 + δ3 + ... = Σr3

...

Next, substitute the roots into the original expression as:

0 = αm −Aαm−1 +Bαm−2 − ...+Hα2 − Iα+K.

0 = βm −Aβm−1 +Bβm−2 − ...+Hβ2 − Iβ +K.

0 = γm −Aγm−1 +Bγm−2 − ...+Hγ2 − Iγ +K.

0 = δm −Aδm−1 +Bδm−2 − ...+Hδ2 − Iδ +K.

...

Add all of these equations together, to obtain

0 = Σrm −AΣrm−1 +BΣrm−2 − ...+HΣr2 − IΣr +mK.

And thus, we can solve for Σrm,

Σrm = AΣrm−1 −BΣrm−2 + ...−HΣr2 + IΣr −mK.

Takem to be 1, 2, 3, ..., and we have expressions for the different sums,

Σr = A

Σr2 = AΣr − 2B

Σr3 = AΣr2 −BΣr + 3C

Σr4 = AΣr3 −BΣr2 + CΣr − 4D

Σr5 = AΣr4 −BΣr3 + CΣr2 −DΣr + 5E

...

We can substitute recursively, as

Σr = A

Σr2 = A2 − 2B

Σr3 = A3 − 3AB + 3C

Σr4 = A4 − 4A2B + 2B2 + 4AC − 4D

...,

but these expressions still do not give us the roots directly.
Instead, Lambert makes a critical assumption: assume there exists a root which is purely real, and which has

a larger real part than all other roots’ real parts. (Lambert’s assumption becomes the condition for convergence
of his series solution. ) Then, taking the ratio of two sums, in the limit as m → ∞, all terms go to zero but the
leading powers.

lim
m→∞

αm + βm + γm + δm + ...

αm−1 + βm−1 + γm−1 + δm−1 + ...
=

αm

αm−1
= α.
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The series representation of this root can be found as:

S =
AΣrm−1 −BΣrm−2 + ...−HΣr2 + IΣr −mK

AΣrm−2 −BΣrm−3 + ...+HΣr2 − IΣr + (m− 1)K
.

In using this to solve for the trinomial,
xm + px = q

Lambert obtains the series solution,

x =
q

p
−

qm

pm+1
+m

q2m−1

p2m+1
−m

3m− 1

2!

q3m−2

p3m+1
+m

(4m− 1)(4m− 2)

3!

q4m−3

p4m+1
− ...

which I’ve put into summation-notation form:

S =
∞∑
k=0

(−1)k
qk(m−1)+1

pkm+1

1

k!

k−2∏
j=0

(km− j).

Details of the actual derivation can be found in "Observationes" §38.
This method of solving for the roots of an equation is due to Daniel Bernoulli ("Observationes de seriebus

recurrentibus", Commentarii Academiae Scientiarum Imperialis Petropolitanae, Tome III pp. 85-100 (1728)). It
is referenced for example by Euler in Chapter 17 of Introductio in analysin infinitorum vol. I. See 9.
Lambert’s solution was used by Euler here to obtain his series solution for a symmetric trinomial, that is, a

trinomial symmetric in parameters α and β of the form:

xα − xβ = (α− β)vxα+β .

2. This is to say, because the function is symmetric in the values α and β, Euler’s sum above can be used to determine
the value not only of x, but x raised to any power n.

3. To understand Euler here, note that in the original series, we may rearrange to obtain S−1
n
on the left hand side,

and v+ 1
2

(n+α+ β)v2 + ... on the right; then we may freely set n = 0 and obtain a non-zero result on the right
hand side, and an indeterminate on the left. Then, in the limit, the expression limn→0

xn−1
n

= log x.

4. The reasoning here may be slightly confusing. Euler simply means that, plugging in β = 0 to the original trinomial,
we get xα − 1 = αvxα, which rearranged gives us the value of x in terms of α and v, x = (1− αv)−1/α. Taking
the log of both sides, we get log x = log[(1 − αv)−1/α]. Expanding the right side as a series (as shown), then
plugging that series back into the equation, we find log x = − 1

α
(−αv − −1/2α2v2 − ...), and distributing the

−1/α gives the original expression for log x.

5. The cited article is §159 of Volume 2 of Euler’s Institutiones calculi differentialis. It is found in chapter 6, the
entirety of which has been translated by Ian Bruce, and is available for free from 17centurymaths.com. The article
expresses a sum

s = log 1 + log 2 + log 3 + log 4 + . . . + log x

Which is equivalent to

s =
1

2
ln(2π) + (x+

1

2
)x lnx− x+

A

1 · 2x
−

B

3 · 4x3
+

C

5 · 6x5
−

D

7 · 8x7
+ etc.

Where A,B,C,D, ... are the Bernoulli numbers for n = 2, 4, 6, 8, ... respectively (with their respective signs being
included in the sum, not in the numbers). That is,

A =
1

6

B =
1

30

C =
1

42

D =
1

30

E =
5

66

etc.
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From which we obtain the given series for the factorial,

n! =

√
2π

en
nn+

1
2 exp

(
1

12n
−

1

360n3
+

1

1260n5
− etc.

)
.

This series is a form of Stirling’s series, related to Stirling’s approximation of the factorial, originally stated by
Abraham de Moivre (1667-1754). It’s interesting to note here, that Euler is well-known for his development of
the Gamma function Γ(x), which also interpolates the factorial. He first put the function in the infinite product
form,

n! =

∞∏
k=1

(
1 + 1

k

)n
1 + n

k

Which he discovered in 1729, though by January of 1720 he had developed the integral form,

n! =

∫ 1

0
(− ln s)nds.

6. This is the first of several sections which are misnumbered in this paper. This is the only misprint which I keep
as-is, in order to maintain order for cross-references with the original.

7. Euler here uses a Taylor expansion of the function Φ(n− α),

Φ(n− α) =

∞∑
k=0

(−α)k

k!

dkΦ(n)

dnk

Then substituting Φ(n) = S,

Φ(n− α) =

∞∑
k=0

(−α)k

k!

dkS

dnk

And similarly for Φ(n− β).

8. This might warrant some further explanation. We take the equation

Φ(n− β)− Φ(n− α) = (α− β)vΦ(n), (1)

and we have S = Φ(n). Using the series expansions of Φ(n− α) and Φ(n− β) this equation becomes
∞∑
k=0

(−β)k

k!

dkS

dnk
−
∞∑
k=0

(−α)k

k!

dkS

dnk
= (α− β)vS. (2)

This is an infinite-degree constant-coefficient linear ordinary differential equation.
We assume a solution of the form S = Ceλn. Then d

kS
dnk

= λkS, so (2) becomes

∞∑
k=0

(−λβ)k

k!
S −

∞∑
k=0

(−λα)k

k!
S = (α− β)vS,

or, dividing out the term S,
∞∑
k=0

(−λβ)k

k!
−
∞∑
k=0

(−λα)k

k!
= (α− β)v.

From here, recall the Taylor series expansion of the exponential is

ex =

∞∑
k=0

xk

k!
.

We can apply this to the two terms on the left-hand side and obtain

(α− β)v = e−λβ − e−λα, (3)

which is an identical expression to the one Euler obtains in §29, with k in place of eλ, and the remainder of the
derivation is the same as his.
However, the requirement is not simply to show that this is a solution, but that it is the only solution to

the above ODE. Euler defers to the results of integral calculus, and says nothing more on the matter. I have
done some research on infinite-degree linear constant-coefficient equations, the principle reference being R.
D. Carmichael’s Linear Differential Equations of Infinite Order (1935). I haven’t found a reference from e.g.
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Institutionum Calculi Integralis relating to this topic yet. Hopefully this has provided some context for Euler’s
results in this section.

9. See Chapter 17 of Euler’s Introductio in analysin infinitorum, E101, Lausanne: Marcum-Michaelem Bousquet,
Volume 1. Opera Omnia Series 1, Volume 8, pp.1-392.

10. Originally misprinted §31, but because it does not alter the later references, I have fixed the number.

11. Originally misprinted as §56.

12. Euler ends with a more poetic passage; it might be translated as ... from which it is enough for us, to have
revealed a fountain, out of which innumerable new series of any kind may be drunk. The dual connotation lends
well to a more flourished sentence, uncharacteristic of Euler’s writing.

272

Gallagher: Euler's De Serie Lambertina, Translated from Latin to English Wit

Published by Scholarly Commons, 2021


	Euler's De Serie Lambertina, Translated from Latin to English With Supplementary Notes
	Recommended Citation

	Euler's De Serie Lambertina, Translated from Latin to English With Supplementary Notes

