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Euler’s Miracle 
 

William Dunham 
Bryn Mawr College 

bdunham@brynmawr.edu 

 
 

Abstract 

This article features some genuine Eulerian magic. In 1748, Leonhard Euler 
considered a modification of the harmonic series in which negative signs were 
attached to various terms by a rule that was far from self-evident. With his 
accustomed flair, he determined its sum, and the result was utterly improbable. 
There are a few occasions in mathematics when the term “breathtaking” is not 
too strong. This is one of them. 

 
 

1. Introduction 
 

Ranking high among the achievements of Leonhard Euler (1707-1783)—achievements 
that span the length and breadth of mathematics—is his work with infinite series. This 
topic had blossomed late in the previous century, especially in Jakob Bernoulli’s Tractatus 
de seriebus infinitis from 1689 [1]. The subject would not take rigorous form until the 
following century, when Augustin-Louis Cauchy defined infinite series as limits of partial 
sums in his 1821 masterpiece, Cours d’analyse [2]. 

Euler lived between Bernoulli and Cauchy. He thus had a foundation upon which to 
build but not the modern definition that we now take for granted. In particular, lacking 
the modern idea of “limit,” Euler regarded infinite series in a more naïve, more holistic 
manner. He treated them as long (yes, very long!) sums that could be manipulated like 
their finitely-long cousins. 

For Euler, the study of infinite series was fertile ground. In 1734 he famously solved 
the Basel problem, a challenge that had been issued by Jakob Bernoulli decades earlier 
[3]. The object was to determine the exact value of the infinite series 

 

1 +
1

4
+

1

9
+

1

16
+

1

25
+ ⋯  . 

 

This defeated all who tried it until the young Euler, with a most ingenious argument, 
showed that 

 

∑
1

𝑘2 =
𝜋2

6

∞

𝑘=1

 . 
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The formula was, and remains, one of the strangest in mathematics. Who, after all, 
would expect 𝜋2 6⁄  to emerge from all those squares? But Euler was correct in his 
conclusion and gave multiple proofs over the course of his career (see [4], [5], and [6]).  

Euler was also adept at treating divergent series. In a 1737 paper, he considered the 
sum of the reciprocals of the primes:   

 

∑
1

𝑝
= 

𝑝 prime

1

2
+

1

3
+

1

5
+

1

7
+

1

11
+

1

13
+

1

17
+ ⋯ . 

     

Not only did he prove that this series “is infinite” (i.e., diverges), but he deduced that it 
diverged at the glacially slow rate of the logarithm of the logarithm. As seen in Figure 1, 
Euler expressed this in the notational style of the 18th century, where his “l” is our “ln” 
[7]. 

 

 
                                                         

Figure 1. 

 
In describing this achievement André Weil wrote, “One may well regard these 
investigations as marking the origins of analytic number theory” [8]. 

So, the verdict is clear: Euler was a master of infinite series.  
In this article, we examine another of his summations [9]. If it is neither so famous 

nor so important as the two mentioned above, it is every bit as clever. Should anyone 
need further evidence of Euler’s mastery of the subject, just read on. 

 
 
2. Euler's Alternating Series 

 
The series in question, which we denote by E (for “Euler”), is a most peculiar one: 
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This is the harmonic series, but with certain signs changed from positive to negative. 
Although many terms are presented here, the rule for determining their signs is not 
transparent. At first glance, the pluses and minuses seem to arise in haphazard fashion. 
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Consider, for instance, the first ten terms. These suggest that every fifth fraction is 
negative. But this “rule” quickly fails, for 1/13 is negative and 1/25 isn’t. Note also that 
the signs alternate from 1/12 to 1/18 but not thereafter. Something peculiar is going on. 

The key to the pattern lies with the denominators of those fractions preceded by 
negative signs: 5, 10, 13, 15, 17, 20, 26, 29, 30, etc. It takes a bit of insight to identify their 
common property and thereby determine the next few entries on the list. If insight fails, 
we can insert these numbers into the On-line Encyclopedia of Integer Sequences to learn 
their secret. (Sure enough, this appears as A209922 in the OEIS.) 

Here’s the explanation: factor a whole number into primes and include it in this 
sequence if and only if its prime factorization contains an odd number of primes which 
are one more than a multiple of 4, the so-called “4k + 1 primes.” Thus, 5 and 13 and 17 
belong because they are primes of this form. Also on the list are 10 = 2 ∙ 5  and  26 = 2 ∙
13  and  30 = 2 ∙ 3 ∙ 5,  for each contains only one such prime. On the other hand,  25 =
5 ∙ 5 , as the product of two 4k + 1 primes, is not included. Neither are  130 = 2 ∙ 5 ∙ 13  
or  625 = 54,  for these have an even number of 4k + 1 primes in their factorization. 

So, to construct the infinite series E, we begin with the harmonic series and negate 
those fractions whose denominators factor into an odd number of 4k + 1 primes. An 
unsettling fact about this mode of construction is that we must know the prime 
factorization of n in order to determine whether 1/n is preceded by a plus or a minus. If  
n were a ten-thousand digit number, such a factorization would not only have exceeded 
Euler’s computational ability but would overwhelm today’s fastest computers. 

By contrast, it is instructive to consider the Leibniz series given by 
 

1 −
1
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1
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1
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1
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1

13
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1

15
+ ⋯ . 

 

In 1674, in an early indication of his mathematical genius, Gottfried Wilhelm Leibniz 
showed that the series sums to  𝜋 4⁄   [10].  It is trivial to find the sign preceding any term 
of this series. For instance, the fraction 1/3,333,333,333,337 is accompanied by a plus 
sign because its denominator is one more than a multiple of four. But to determine the 
sign of this same fraction in Euler’s series, we would have to factor the denominator into 
primes and count how many are the form 4k + 1. This is vastly more challenging.  

It is fair to say, then, that the series E is non-trivial. Finding its signs is difficult. 
Ascertaining whether it diverges or converges (conditionally) is more problematic. 
Determining its exact sum seems hopeless. To devote time to this last task looks like the 
height of folly. 

But Euler did it. He showed that (spoiler alert) the series sums to  𝜋. Exactly! 
This seems preposterous. Here we have a series with number theory in its genes, one 

whose very construction rests on the dichotomy between 4k + 1 and 4k + 3 primes. Yet 
the series sums to the ratio of a circle’s circumference to its diameter. Is this a typo, or 
has number theory somehow morphed into plane geometry?  

A skeptic might want to calculate partial sums. The sum of the first hundred terms of 
the series is about 2.93 and that of the first 200 is around 3.37. With help from OEIS, we 
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learn that the partial sum of a few thousand more terms of Euler’s series falls around 
3.12. The nearness to 𝜋 suggests that Euler might not have been hallucinating after all.  

Of course, an approximation is not conclusive. We need to examine Euler’s logical 
justification as it appears in Chapter XV of his 1748 work Introductio in analysin 
infinitorum. 

To attack the problem, Euler used four preliminary results. The first three came from 
analysis. One was the value of the Leibniz series, mentioned above. The second was the 
answer to the Basel problem, also cited earlier. The third was this pair of elementary facts 
about an infinite geometric series: 

 

1 + 𝑎 + 𝑎2 + 𝑎3 + 𝑎4 + ⋯ =  
1

1 − 𝑎
 ,  provided − 1 < 𝑎 < 1 ,  

and 

1 − 𝑎 + 𝑎2 − 𝑎3 + 𝑎4 − ⋯ =  
1

1 + 𝑎
 ,  provided − 1 < 𝑎 < 1 . 

 

Although we commonly use these formulas to replace a geometric series by its simple 
sum, Euler was ever ready to reverse the process and expand 1/(1 − 𝑎) or 1/(1 + 𝑎)  into 
their associated series. This will be apparent shortly. 

His fourth prerequisite was the unique factorization theorem—namely, that any 
whole number can be factored uniquely into the product of primes. Nothing in the theory 
of numbers is more fundamental.  

With these few ingredients, Euler was ready to cook up a treat. He began by adding 
the Leibniz series to one-third of itself: 
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This eliminated all denominators divisible by 3. Euler next took one-fifth of the resultant 
series and subtracted: 
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At this point, all denominators containing a factor of 3 or 5 are gone. The next step was 
to multiply the last series by 1/7 and add to get: 

 

𝜋

4
(1 +

1

3
) (1 −

1

5
) (1 +

1

7
) = 1 −

1

11
+
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1

17
−

1

19
−

1
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+

1
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+ ⋯ . 

 

It is clear that at each stage the right-hand side begins 1 ± 1/𝑝 where p is prime. Euler 
continued the process “forever” (remember, this was before “limits” had been intro-
duced), adding when 1/p was preceded by a minus sign in the Leibniz series and 
subtracting when it was preceded by a plus sign. Of course, this means that he added 
when the prime was of the form 4k + 3 and subtracted when it was of the form 4k + 1. 
The process gave him a remarkable formula involving the odd primes: 

 

𝜋

4
(1 +

1

3
) (1 −

1

5
) (1 +

1

7
) (1 +

1

11
) (1 −

1

13
) (1 −

1

17
) (1 +

1

19
) ⋯ = 1 . 

 

From this, it followed that 
 

       (1 +
1

3
) (1 −

1

5
) (1 +

1

7
) (1 +

1

11
) (1 −

1

13
) (1 −

1

17
) (1 +

1

19
) ⋯ =

4

𝜋
 .               (A) 

 

Note that Euler generated (A) by converting an infinite sum (the Leibniz series) into an 
infinite product.  

We briefly set aside this result and consider a different expression built out of primes, 
this time including the prime 2. It begins with a quotient whose denominator is an infinite 
product: 
 

1

(1 +
1
2) (1 −

1
2) (1 +

1
3) (1 −

1
3) (1 +

1
5

) (1 −
1
5

) (1 +
1
7) (1 −

1
7) (1 +

1
11) (1 −

1
11) ⋯

 .   

 

Euler transformed this into 
 

 
1

(1 −
1
4) (1 −

1
9) (1 −

1
25

) (1 −
1

49) (1 −
1

121) (1 −
1

169) ⋯
   

 

=  
1

1 −
1
4

 ⋅  
1

1 −
1
9

 ⋅  
1

1 −
1

25

 ⋅  
1

1 −
1

49

 ∙
1

1 −
1

121

 ⋅  
1

1 −
1

169

 ∙ ⋯ . 

 

Treating each of these factors as the sum of an infinite geometric series, he replaced 
fractions with series: 

 

(1 +
1

4
+

1

16
+

1

64
+ ⋯ ) × (1 +

1

9
+

1

81
+ ⋯ ) × (1 +

1

25
+

1

625
+ ⋯ ) 

 

× (1 +
1

49
+ ⋯ ) × (1 +

1

121
+ ⋯ ) × ⋯ . 
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Here we have an infinite product of the series of reciprocals of even powers of the primes. 
If we multiply these as though they were finitely long and arrange the outcome with 
increasing denominators, we get 

 

1 +
1

4
+

1

9
+

1

16
+

1

25
+

1

36
+

1

49
+

1

64
+

1

81
+

1

100
+ ⋯ , 

 

a familiar series indeed. 
This works because of the unique factorization theorem. Any square can be uniquely 

decomposed into the product of primes raised to even powers, and all such powers 
appear somewhere in the infinite product above. For instance, we know that 

 

1

144
=

1

122 =
1

24 ∙
1

32 , 
 

and so 1/144 arises as the product of 1/16 and 1/9. Moreover, there is no other way for 
it to appear here. By unique factorization, the reciprocal of every square will appear once 
and only once in this product.  

Putting all of this together and invoking the Basel problem, Euler concluded that 
 

1

(1 +
1
2) (1 −

1
2) (1 +

1
3) (1 −

1
3) (1 +

1
5

) (1 −
1
5

) (1 +
1
7) (1 −

1
7) (1 +

1
11) (1 −

1
11) ⋯

 

 

                       = 1 +
1

4
+

1

9
+

1

16
+

1

25
+

1

36
+

1

49
+

1

64
+

1

81
+

1

100
+ ⋯ =  

𝜋2

6
 .         

 

Note that, in the process, Euler had converted an infinite product into an infinite sum, 
exactly the opposite of what he did to generate (A). He was nothing if not versatile.   

Taking reciprocals of the previous equation, Euler arrived at another wonderful 
formula: 

 

    (1 +
1

2
) (1 −

1

2
) (1 +

1

3
) (1 −

1

3
) (1 +

1

5
) (1 −

1

5
) (1 +

1

7
) (1 −

1

7
) ⋯ =  

6

𝜋2  .         (B) 
 

He now ended with a flourish. Dividing the result in (A) by that in (B), multiplying the 
quotient by 3/2, and cancelling wholesale, he reasoned that 

 

    
3

2
 [

4 𝜋⁄

6 𝜋2⁄
]                                                                                                                                                      (C) 

 

=
3

2
 [

(1 +
1
3) (1 −

1
5

) (1 +
1
7) (1 +

1
11) (1 −

1
13) (1 −

1
17) (1 +

1
19) ⋯

(1 +
1
2) (1 −

1
2) (1 +

1
3) (1 −

1
3) (1 +

1
5

) (1 −
1
5

) (1 +
1
7) (1 −

1
7) (1 +

1
11) (1 −

1
11) ⋯

] 

 

 =  
1

(1 −
1
2

) (1 −
1
3

) (1 +
1
5

) (1 −
1
7

) (1 −
1

11
) (1 +

1
13

) (1 +
1

17
) (1 −

1
19

) ⋯
  

 

177

Euleriana, Vol. 1 [2021], Iss. 2, Art. 5

https://scholarlycommons.pacific.edu/euleriana/vol1/iss2/5
DOI: 10.56031/2693-9908.1014



=  
1

1 −
1
2

 ⋅  
1

1 −
1
3

 ⋅  
1

1 +
1
5

 ⋅  
1

1 −
1
7

 ∙
1

1 −
1

11

 ⋅  
1

1 +
1

13

 ∙
1

1 +
1

17

∙ ⋯ . 

 

This is the product of infinitely many fractions of the form 1 (1 ± 1/𝑝)⁄ , and, as we 
saw above, any such fraction can be expanded into a geometric series. Euler thus 
transformed his product into 

 

(1 +
1

2
+

1

4
+

1

8
+

1

16
+ ⋯ ) × (1 +

1

3
+

1

9
+

1

27
+ ⋯ ) × (1 −

1

5
+

1

25
−

1

125
+ ⋯ ) 

 

× (1 +
1

7
+

1

49
+ ⋯ ) × (1 +

1

11
+

1

121
+ ⋯ ) × (1 −

1

13
+

1

169
− ⋯ ) 

 

× (1 −
1

17
+ ⋯ ) × ⋯ . 

 

We observe that some of these series feature all positive terms, whereas others have 
alternating signs. And here is the key point: the alternating ones are those generated by 
primes of the form 4k + 1.  

We now multiply these geometric series and arrange the outcomes with increasing 
denominators. Unique factorization guarantees that the product contains the reciprocal 
of each whole number once and only once and that the sign of any reciprocal depends on 
how many 4k + 1 primes go into its product. If there is an odd number of such primes, our 
fraction is negative; otherwise, it is positive. (It is instructive to multiply some terms to 
see this happening.) The result of such multiplication is: 

 

1 +
1

2
+

1

3
+

1

4
−

1

5
+

1

6
+

1

7
+

1

8
+

1

9
−

1

10
+

1

11
+

1

12
−

1

13
 

 

+
1

14
−

1

15
+

1

16
−

1

17
+

1

18
+

1

19
−

1

20
+

1

21
+

1

22
+

1

23
 

 

+
1

24
+

1

25
−

1

26
+

1

27
+

1

28
−

1

29
−

1

30
+

1

31
+ ⋯ .   

 

Here we have arrived at the series E. And what is its value? It is staring at us, a few 
lines above, in (C): 

3

2
 [

4 𝜋⁄

6 𝜋2⁄
] =

12/𝜋

12/𝜋2 = 𝜋 . 

 

In short, 
 

1 +
1

2
+

1

3
+

1

4
−

1

5
+

1

6
+

1

7
+

1

8
+

1

9
−

1

10
+

1

11
+

1

12
−

1

13
+

1

14
−

1

15
+ ⋯ = 𝜋 , 

 

as asserted. This tour de force is nothing less than an Eulerian miracle. 
At this point, we might recall a modern result from analysis [11]: 
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    𝑻𝒉𝒆𝒐𝒓𝒆𝒎. If ∑ 𝑎𝑘 is a conditionally convergent series and if  𝑟  is a real number, 

∞

𝑘=1

 

then there exists a sequence of signs (𝛿𝑘 = +1 or − 1) such that ∑ 𝛿𝑘𝑎𝑘 = 𝑟 .

∞

𝑘=1

 

 

Thus, beginning with the alternating harmonic series and manipulating positive and 
negative signs, we can generate a series that converges to any number we  wish.  This has 
the power of generality, but the charm of Euler’s achievement is that he found an explicit 
rule for signs that generated a series converging to  𝜋.  And that rule, improbably, involved 
the dichotomy between 4𝑘 + 1 and 4𝑘 + 3 primes. 

 
 
3. Conclusion 
 
It goes without saying that Euler was exploring uncharted territory. Results of this type 
now fall under the theory of Dirichlet series and require analytic subtleties not developed 
until many decades after Euler’s death. Harvard mathematician Benedict Gross observed 
that “To me, the amazing thing about Euler is that he knew where to look. No one else 
was working on this, so he had no guide” [12]. And historian of mathematics Ivor Grattan-
Guinness memorably wrote that “Euler was the high priest of sum worship, for he was 
cleverer than anyone else at inventing unorthodox methods of summation” [13].  Gross 
and Grattan-Guinness were surely correct, and there might be no better illustration of 
this truth than the unorthodox—and amazing—summation just described. 
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