University of the Pacific
Scholarly Commons

Pacific Information Service on Street-Drugs
November 1973
School of Pharmacy

Follow this and additional works at: https://scholarlycommons.pacific.edu/issd
Part of the Chemicals and Drugs Commons, and the Pharmacy and Pharmaceutical Sciences Commons

Recommended Citation
https://scholarlycommons.pacific.edu/issd/13

This Article is brought to you for free and open access by the Thomas J. Long School of Pharmacy and Health Sciences at Scholarly Commons. It has been accepted for inclusion in Pacific Information Service on Street-Drugs by an authorized administrator of Scholarly Commons. For more information, please contact mgibney@pacific.edu.
Sponsored by: Beta Omega Chapter
Rho Chi
Gamma Nu Chapter
Kappa Psi
Associated Students
University of the Pacific

Published by: School of Pharmacy
University of the Pacific
Stockton, California 95204
U. S. A.

Cover: Marvin H. Malone

PACIFIC INFORMATION SERVICE
ON STREET-DRUGS

j.k. brown
m.h. malone
: editors

VOL. THREE NO. 2
THE CHEMICAL COMPOSITION OF ILLICIT DRUGS

IN MUNICH

Dr. D. J. Mattke
Verein für Drogenhilfe e. v.
Munich
and
Dr. M. Steinigen
Deutsches Arzneimittel-Institut
Munich
German Federal Republic

This paper was presented
Wednesday - September 6, 1972.
Section B-3, "Analysis of
Controlled Substances."

This completes the publication
of the papers presented in
Amsterdam [Pacif. Inform. Serv.
Street-Drugs, 2(5-6): 31-48 (1973)
The data and conclusions presented
here are important historically
and have significant sociologic
and toxicologic aspects. Also,
the availability of these data
increase the factual knowledge
concerning the actual composition
of illicit drugs.

The Editors

Pacific Information Service on Street-Drugs Volume 3 No. 2
November 1973
INTRODUCTION

A specific aspect of the "drug problem" is the lack of knowledge concerning the chemical composition of drugs available on the "black market". Neither dealer nor user have verified information in this respect. As a rule investigators concerned with the various aspects of drug misuse (physicians, scientists, journalists, and judges) do not have this information either. Therefore, there are considerable difficulties arising in therapeutic and social work as well as in scientific discussions of the drug problem.

To our knowledge only a few reports exist concerning the chemical composition of widely sold illicit drugs. A Canadian investigation (Marshman and Gibbins, 1970) found among 176 street samples offered as LSD only 97 (56.2%) contained relatively pure LSD. Fifty-eight samples offered as mescaline - not one contained the alleged drug. A group from Holland (Filleto Kok et al., 1971) analyzed the Amsterdam market and found similar results for LSD and mescaline, respectively. Among the 119 street samples from the Amsterdam market, three samples sold as "hallucinogens" contained highly toxic material with no psychoactive substances found.

METHODOLOGY

a.) Origin and Composition of the Analyzed Samples

We focused our investigation on the illicit "trip" market in Munich from December 1970 to November 1971. Analyzed during this time were all the street samples received at the Municipal Drug Center. In the course of the investigation, only those hashish preparations were accepted for analysis that were said to contain admixtures of opium, belladonna, or strychnine. Likewise, but just occasionally, morphine, heroin, opium preparations, and other opiates, were analyzed to get a gross orientation of the market. The same applied to alleged samples of amphetamine ("speed"). This part of the investigation included 78 samples that were declared to be "trips", "speed", opiate and/or hashish preparations. Furthermore, we checked 66 samples that were sent directly to the Deutsches Arzneimittel-Institut (DAPI) from pharmacists, physicians, and unidentified private persons. Nearly all of the samples were specified to originate from the "market" in Munich and vicinity, and were generally identified as "drugs".

b.) Chemical Analysis

The details of procedures and techniques used for chemical analysis have been reported elsewhere (3-5). Thin-layer chromatography, infra-red and ultra-violet spectrophotometry were used for identification and purity assessment, while gas-chromatography, spectrophotometric and fluorometric methods were employed for quantitative analysis. To determine very small amounts of LSD, gas-chromatography and fluorometry were used.

In spite of many years of specific experience in pharmaceutical analysis, a reasonably exact determination of the chemical composition of a number of samples was only attained by combining different analytical procedures.
C.) Documentation

Most of the individual samples were photographed on color film before analysis in order to compare preparations received later with those already received. In addition to the results of the analysis and methods used, other characteristics of the sample such as shape, color, weight, and size were recorded.

FINDINGS

The analytical results of 144 street samples, whose origin has been described, are summarized in Table I. LSD "trips" and other samples designated as "trips" (mescaline and psilocybin) amounted to the bulk of the investigated material (109 samples). Eighty-nine samples were alleged to be LSD, 58 of these samples contained pure LSD only. Nineteen specimens, especially "paper trips" and other preparations of large surface (sugar cubes, dextrose tablets, powder capsules, and solutions), were often decomposed or contaminated. Twelve samples, with one exception, contained inert materials or harmless compounds (saccharine, dextrose, lactose, urea, potassium sulphate etc.). The one exception was a liquid that was claimed to be pure LSD, but consisted of 60 % sulphuric acid. Further spreading in the market of this solution was prevented. Among the 14 samples declared to be mescaline, only one sample contained mescaline (capsule filled with 0.29 gm of pure mescaline hydrochloride).

None of the six alleged psilocybin samples was found to contain the drug. The chemical analysis of the mescaline and psilocybin declared samples yielded LSD in two instances, and inert ingredients such as colored lactose, starch, dextrose, talcum powder, dusting powder, etc., in all the other samples.

The hashish samples that were claimed to be contaminated with opium, strychnine or belladonna contained none of these substances. The samples were found to be particularly rich in tetrahydrocannabinol, the principal psychoactive ingredient of hashish.

White and grayish-white powder substances were frequently claimed by drug users to be heroin. One sample was heavily decomposed heroin which could have originated from old stocks. The remaining samples contained lactose, starch, penicillin-G sodium (two instances), and sodium cyanide (one sample).

Among the opium preparations, crude opium and opium extract was each found twice, the latter with a morphine content of about 20 % and once an acetic opium tincture ("Berlin Tincture", "H-Tincture"). Three samples were alleged to be morphine - two of these contained relatively pure morphine hydrochloride, the third sample contained no morphine but was a pulverized analgesic tablet.

The amphetamine ("speed") samples consisted of five tablets, two ampules and five capsules - seven contained amphetamine only, one ampoule contained amphetamine plus oxycodone, two were amphetamine with LSD. Two alleged amphetamine samples were determined to be metoclopramide (Paspertin®) for one and the other was the anti-depressant amitriptyline.

The results of the quantitative analysis of the LSD samples studied are listed in Table II. The dose range was found to vary between 12 and 244 mcg. of LSD (calculated as base). Samples with LSD concentrations below 50 mcg. were predominately the contaminated specimens, such as "paper trips" and similar preparations. The higher dose samples were mostly of great purity, and with few exceptions, they were small, white or colored, well manufactured tablets. The declared dosages often were highly accurate.

Table I - Results of Qualitative Analysis of 144 Street Samples

<table>
<thead>
<tr>
<th>Alleged Chemistry</th>
<th>Pure</th>
<th>Impure</th>
<th>Other Drug</th>
<th>Number of Samples</th>
</tr>
</thead>
<tbody>
<tr>
<td>LSD</td>
<td>58</td>
<td>19</td>
<td>12</td>
<td>89</td>
</tr>
<tr>
<td>Mescaline</td>
<td>1</td>
<td>-</td>
<td>13</td>
<td>14</td>
</tr>
<tr>
<td>Psilocybin</td>
<td>-</td>
<td>-</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>Amphetamine</td>
<td>7</td>
<td>3</td>
<td>2</td>
<td>12</td>
</tr>
<tr>
<td>Heroin</td>
<td>-</td>
<td>1</td>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td>Opium</td>
<td>5</td>
<td>-</td>
<td>-</td>
<td>5</td>
</tr>
<tr>
<td>Morphine</td>
<td>2</td>
<td>-</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>Hashish with</td>
<td>7</td>
<td>-</td>
<td>1</td>
<td>8</td>
</tr>
<tr>
<td>Admixtures</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Totals</td>
<td>80</td>
<td>23</td>
<td>41</td>
<td>144</td>
</tr>
</tbody>
</table>

Table II - Quantitative Analysis of 77 LSD-Containing Street Drugs

<table>
<thead>
<tr>
<th>LSD Content (mcg.)</th>
<th>Number of Samples</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 - 50</td>
<td>18</td>
<td>24.7</td>
</tr>
<tr>
<td>51 - 150</td>
<td>37</td>
<td>45.2</td>
</tr>
<tr>
<td>151 +</td>
<td>22</td>
<td>30.1</td>
</tr>
</tbody>
</table>

DISCUSSION

According to "textbook" psychiatry, the main factors causing the development of drug dependence, are thought to be found in individual personality characteristics, in the specific drug taken, and social environment. Extensive literature exists about personality characteristics and structure of drug dependent persons (6). The social conditions, contingent with a high incidence of drug dependence have been discussed in recent reports (10,14-15). Additionally, reports concerning the pharmacology (12-13,16) and epidemiology (11,16-17) of the
The Amsterdam investigational group had to intervene three times during the time period between December 1970 and November 1971. So far, it has not been feasible to compare the corresponding studies of Marshman and Gibbins in Toronto (1) or Fieldt-Kok in Munich (2) in detail. Methodological and criminological difficulties in gathering illegal street samples lead to great differences in the composition of investigational materials. Nevertheless, there were certain similarities among the markets in Toronto, Amsterdam, and Munich.

1. As a rule, samples sold as psilocybin or mescaline could not be documented to have been made in a controlled therapeutic situation. For doses of more than 250 mcg. the term psychedelic is used.

As we have pointed out, samples of LSD and hashish belonged to contain psychoactive extraneous materials which could not be documented to have been made in a controlled therapeutic situation. (For doses of more than 250 mcg. the term psychedelic is used.)

As a rule, much greater doses (up to 600 mcg.) were claimed. Frequently, "bummers" that were brought to the drug centers as emergency cases were explained in the terms of exaggerated LSD concentrations, or the fear of an admixture with strychnine or "speed." Also, the widespread opinion that negative drug experiences such as "bummers" are triggered by deteriorated LSD cannot be held true.

The minute amounts of active ingredients in LSD samples, deterioration products occur in amounts insufficient to be considered psychoactive. Experienced drug users, as well as drug counselors and other experts, tend to explain negative drug experiences chemically. This indicates a range of deficit of information in a relationship to many aspects of illegal drug use on the one hand, and on the other a rejection of adjacent causes which can be found in the personality characteristics and the social environment of the user.

References

Some publications on interest:

