The Surface Area of a Scalene Cone as Solved by Varignon, Leibniz, and Euler

Daniel J. Curtin
Northern Kentucky University, curtin@nku.edu

Follow this and additional works at: https://scholarlycommons.pacific.edu/euleriana

Part of the Other Mathematics Commons

Recommended Citation
Available at: https://scholarlycommons.pacific.edu/euleriana/vol1/iss1/3

This Translation & Commentary is brought to you for free and open access by Scholarly Commons. It has been accepted for inclusion in Euleriana by an authorized editor of Scholarly Commons. For more information, please contact mgibney@pacific.edu.
The Scalene Cone: Euler, Varignon, and Leibniz

Daniel J. Curtin, Northern Kentucky University (Emeritus)
148 Brentwood Place, Fort Thomas, KY 41075
curtin@nku.edu

Abstract
The work translated alongside this article is Euler’s contribution to the problem of the scalene cone, in which he discusses the earlier work of Varignon and Leibniz. He improves Varignon’s solution and corrects Leibniz’s more ambitious solution. Here I will discuss the problem, provide extensive notes on Euler’s paper, and lay out its relation to the other two. For ease of reference translations of the papers of Varignon and Leibniz are appended, with the Latin originals. Euler’s version in Latin is available at https://scholarlycommons.pacific.edu/euler-works/133

1 The Problem

1.1 The History of the Problem
Finding the surface area of a right cone, a cone with circular base and vertex directly over the center of the circle, was known from antiquity, certainly by Archimedes.

The problem of finding the surface area of a scalene (or oblique) cone, one with circular base but vertex not necessarily directly over the center of the circle, seems to have been solved first by Pierre Varignon. In 1727 he published his result in the *Miscellanea Berolinensia* [3]. He called his paper a *schediasma*, a Latin version of a word that in Greek means a caprice, or whimsy. Varignon probably meant a sketch or rough draft. In fact, the mathematics in his paper is fully formed, but the layout and referencing are not carefully done. He solved the problem by giving a curve whose arc length at certain points gives the surface area of the corresponding part of the cone.

In the same volume, in fact in the article immediately following Varignon’s, Gottfried Leibniz [4] gave his suggested improvements. Varignon’s curve was transcendental, implicitly using trigonometric functions. Leibniz gave an algebraic curve to solve the problem and outlined how to extend his solution to base curves other than the circle. The two papers share a single diagram, printed in between them.
In his introductory paragraph, Leibniz asserted that Gilles de Roberval told Leibniz he had a solution, but never published it, but Leibniz noted that he could not find such work among Roberval’s papers, after his death.

A bit later, Euler took up the problem, publishing his solution in 1750 [2]. In his introduction, he referred to the two earlier papers by Varignon and Leibniz. He remarked that Leibniz’s solution was excellent, but involved a slight error. Euler used a Greek word in Latin form, sphalma meaning a misstep or stumble, perhaps to soften the criticism of a mathematician he greatly admired. Euler gave his own version of Varignon’s solution, then extended it in several ways. He explained where Leibniz went wrong, then corrected the misstep.

1.2 The Differential Approach

A cone is defined by starting with a circle in the plane and a vertex V that is above the plane but not necessarily located directly over the center of the circle. A point on the circle A is selected and line segment VA is connected. Then the cone is defined by following points M around the circle as VM sweeps out any section AVM of the cone that is desired. This dynamic definition allows infinitesimal methods to be used. For all three authors, a solution to the problem is a curve whose arc length gives the areas of the sectors of the cone. For either the arc length problem or the surface area problem, the integrals that result are rarely integrable in simple terms, since they both involve the element of the arc length $ds = \sqrt{dx^2 + dy^2}$ or something similar.

2 The Right Cone

To illustrate the idea let’s do the surface area of the right cone. We don’t need infinitesimal arguments here. Let C be the center of the circle and r the radius [Figure 1.] Consider the segment AVM of the cone, with slant height l and central angle $u = \angle MCA$. In the plane the circular arc AM has length ru. Then AVM can be unfolded to a plane figure $A'V'M'$ that is part of a circle of radius $l = A'V'$, with arc $A'M'$ of length ru. The central angle of $A'V'M'$ is ru/l, so the area of $A'V'M'$ is

$$\frac{1}{2}l^2\frac{ru}{l} = \frac{1}{2}lru = \frac{lr}{2}u .$$

Now l and r are constants, so as a function of u this is a curve, in fact a line, whose arc length for any given point that is parametrized by a particular value u gives the areas of that circular sector.
3 The Scalene Cone with Circular Base

If the vertex is off center things get quite a bit more complicated. This was first solved by Varignon [3]. Then Leibniz [4], using a different approach, claimed to solve it with an algebraic curve. He also claimed his approach extends to the case of an arbitrary base curve. Euler points out that this is not quite correct and removes the error, as we will see later.

The fundamental idea in all cases is to look for another point \(m \), close to \(M \). The area of the region \(MVm \) is then the building block for the surface area. Taking \(m \) infinitesimally close to \(M \) makes \(MVm \) what they called the element of the surface area, for us the integrand of the integral that would give the surface area. For Euler and the others, solving the problem meant finding a curve whose arc length element is this element of surface area.

4 Notes on Euler’s Paper

In what follows, I will outline what Euler does in various paragraphs, while leaving the reader to see much of the details in the work itself. I also try to include things I wish I had seen the first time I read this paper, in hopes they may prove helpful.

In [1], I go into much more detail about paragraphs 1–16, but note that, as usual, Euler himself does a good job of explaining his own ideas.

4.1 Paragraphs 2–4

Euler first sets out to reproduce Varignon’s curve [Figure 2]. He uses the central
angle of the circle $u = \angle ACM$ as the parameter for his solution. He defines	hree constants: a, the radius of the circle; b, the height of the cone (VD); andc, the distance from the center of the circle to the foot of the perpendicular
from V to the plane of the base ($c = CD$). He then derives the area as

$$AVM = \frac{1}{2}a \int du \sqrt{b^2 + (c \cos u - a)^2}.$$

Euler generally writes bb for b^2, etc. In this commentary I will use the more
modern notation, since they mean the same thing. I have not moved his du, etc.,
to the modern location, since I believe we understand the du quite differently
from Euler. I left the notation in my translation as close to Euler's as possible.

In paragraph 4 he concludes the curve is given, in what we would call
parametric form:

$$p = bu,$$
$$q = c \sin u - au.$$

He then says, “It will be clear to the attentive reader that this curve is the same
as Varignon discovered.” It took me a bit of work, but I was able to verify this
equivalence; see section 5 below.

4.2 Paragraph 5
Euler does not stop here. As usual he works to get as much out of the idea
as possible. He notes that this solution involves transcendental functions, while
Leibniz has found (almost correctly) an algebraic solution, though by a different method that Euler discusses later.

4.3 Paragraphs 6 & 7

Euler then proceeds to substitute \(z = \cos u \) and thus to generate not only one algebraic solution but in fact a whole family of algebraic solutions.

4.4 Paragraphs 8–15

Euler works out several examples, also detailed in [1]. He always finds a parametrized curve, never a numerical answer.

4.5 Paragraph 16

Euler solves the case in which the perpendicular from vertex \(V \) passes through the point \(A \) on the circle and where the angle of the axis \(VC \) of the cone to the base is \(60^\circ \). He derives parametric equations for a curve that solves the problem, then, almost as an afterthought, notes that the actual area of the part of the cone swept out from \(E \) to \(M \) will be \(\frac{1}{2}az \), where \(a \) is the radius of the base circle and \(z = \arcsin \angle ECM \), the angle \(ECM \) being the complement of the angle \(u = \angle ACM \) used in determining the curve.

5 Euler’s Solution Is the Same as Varignon’s

This section is for those interested in Varignon’s paper [3], which is translated in Appendix 1.

At the end of Euler’s paragraph 4 he gives a parametrized curve whose arc length (multiplied by \(\frac{1}{2}a \)) is the surface area of the scalene cone. The curve is given by abscissa \(p = bu \) and ordinate \(q = c\sin u - au \). He then asserts, “It will be clear to the attentive reader this is the same curve as Varignon discovered.” Let’s see how.

I will use mostly Varignon’s notation. For the radius of the circle, Varignon uses \(r \), Euler \(a \). For the distance from the center of the circle to the foot of the perpendicular from the vertex, Varignon has \(r + a \), Euler \(c \). For the distance from the vertex to the plane of the circle both use \(b \). Euler uses \(u \) for the generating angle \(\angle DCM \). Varignon uses no letter for his angle \(\angle AOH \), but I will use Euler’s notation \(u \). Further, for the arc swept out on the circle through the angle \(u \), Varignon uses \(AH \), Euler \(AM \). Either of these is equal to \(ru \).
Thus in Varignon’s notation (plus \(u\)) Euler’s curve becomes

\[
\begin{align*}
p &= bu, \\
q &= (r + a) \sin u - ru.
\end{align*}
\]

Varignon gives his curve, beginning in the part entitled Proof, with a free constant \(m\). For us the relevant parts are as follows, first in the form Varignon wrote them, using the letters from his diagram:

\[
\begin{align*}
AE &= \frac{BC \cdot AH}{2m} = \frac{b}{2m} AH, \\
EP &= \frac{AO \cdot AH + OC \cdot GH}{2m} = \frac{rAH + (r + a)y}{2m}.
\end{align*}
\]

Here if we suppose \(p = AE\) and \(q = EP\), then try \(2m = r\), we get

\[
\begin{align*}
p &= AE = \frac{b}{a} AH, \\
q &= EP = \frac{rAH + (r + a)y}{r}.
\end{align*}
\]

Further, looking at Varignon’s diagram, we see

\[\sin u = \frac{-y}{r}.\]

With \(AH = ru\) this gives us

\[
EP = \frac{r^2u + (r + a)r(-\sin u)}{r} = ru - (r + a) \sin u.
\]

Thus we correct our guess to make \(q = -EP\), which makes no difference to the length.

Finally, as mentioned above, Euler had factored \(a/2\) out of his integral for the surface area before deriving \(p\) and \(q\), but Varignon’s curve can account for this by adjusting the value of the constant \(m\) to be \(\sqrt{a}\).

6 Leibniz’s Solution Perfected

For the remainder of the paper, Euler takes up the general problem of a cone with any curve in the plane whatsoever as base [Figure 3]. After setting this up in paragraphs 17–20, he returns to Leibniz’s idea and in paragraphs 21–28 corrects his solution.
6.1 Paragraphs 17 & 18

Euler no longer has the central angle available, so he takes any point \(M \) on the curve and the foot \(D \) of the perpendicular from the vertex to the plane, and he sets \(x = DM \). He then takes the tangent line to the curve at \(M \) and identifies the point \(Q \) on that line for which \(DQ \) is perpendicular to the tangent. He sets \(y = DQ \) and notes that “there will be an equation between \(x \) and \(y \).”

We’ll follow the general trend of the argument. The details are not hard to read in the text.

As before, he considers a point \(m \) on the curve infinitely near \(M \). The triangle \(MVm \) is the element of the surface area of the cone. Recall that \(b = VD \) is the height of the cone. Since \(VQ \) is the height of this triangle,

\[
MVm = \frac{1}{2} Mm \cdot VQ.
\]

He shows that

\[
MVm = \frac{1}{2} \int xdx \sqrt{b^2 + y^2} \quad \frac{1}{\sqrt{x^2 - y^2}},
\]

so

\[
AVM = \frac{1}{2} \int xdx \sqrt{b^2 + y^2} \quad \frac{1}{\sqrt{x^2 - y^2}}.
\]
The last equation gives an integral for the area desired.

6.2 Paragraph 19

Euler unfolds the cone onto the plane [Figure 4], as we do with the right cone, but here he approaches the triangle MVm in a different way. He uses the perpendicular, Mr from M to Vm, which would be the height of the triangle relative to Vm, and derives the distances Mr and mr for later use.

![Figure 4: The section of the same cone spread out on the plane.](image)

6.3 Paragraph 20

Next Euler returns to the cone in space [Figure 3], and he assumes the existence of the solution curve AFS. He will derive properties of the point S and eventually show how to find it. Leibniz had based his argument on selecting an angle, essentially $\angle SMN$ to lead to his solution curve FS. In fact, Euler’s Fig. 4 [Figure 5] resembles the figure for Leibniz’s paper [4].

To see how the area can be defined using an angle, Euler defines $v = \angle AVM$. He also defines $u = \angle ADM$. Then since VM and Vr are radii of an infinitesimal circle centered at V and $dx = Mr$ is an arc of the circle,

$$dv = \frac{Mr}{VM}.$$

By a similar argument, using D as the center,

$$du = \frac{Mn}{DM}.$$
Using previous calculations for $Mr, VM, Mn,$ and DM from paragraphs 17–19, Euler obtains

$$dv = \frac{x dx \sqrt{b^2 + y^2}}{(b^2 + x^2) \sqrt{x^2 - y^2}}$$

and

$$du = \frac{y dx}{x \sqrt{x^2 - y^2}}.$$

He solves the second for y, then substitutes into the first, which yields

$$dv = \frac{\sqrt{b^2 dx^2 + (b^2 + x^2) x^2 du^2}}{\sqrt{b^2 + x^2}}.$$

Thus, since u depends on x, the angle v can be found by integrating, and it then can be used to find the surface area AVM.

6.4 Paragraph 21

Euler now returns to the basic integral needed to solve the problem,

$$\int \frac{x dx \sqrt{b^2 + y^2}}{\sqrt{x^2 - y^2}},$$

and he notes that it can be solved in many different ways. Since Euler’s goal is to correct Leibniz’s approach, which he describes as “the most elegant,” he sets out to follow Leibniz’s idea.
6.5 Paragraph 22

Euler begins to trace Leibniz's procedure. As noted above, Euler assumes that the desired curve FS is given, then deduces what is needed to show its existence and nature.

For each point M on the base curve AM, there is the segment MS to S on the rectifying curve. For a point m infinitely near M, the corresponding segment ms should be such that S is infinitely near s. The arc length of the base curve is given as $s = AM$. (Yes, Euler uses the same letter for two different things, but the context always makes it clear which is which.) Let $v = \angle SMm$, i.e., the angle of MS to the tangent at M. Then $ds = Mm$ and $\angle smN = v + dv$. He defines the osculating circle to AM at M whose center is R and whose radius is $r = MR$. Then after a bit of work he obtains

$$MS = \frac{rd\sin v}{ds + rdv},$$

from which he claims the construction of the curve FS follows, as we shall see. Here F is the point on the curve corresponding to $M = A$.

6.6 Paragraph 23

Euler sets $z = MS$, so $ms = z + dz$. Using a bit of right angle trigonometry he shows that the element of arc length of the resolving curve $Ss = ds \cos v + dz$.

Integrating with respect to z he obtains

$$FS = \int ds \cos v + z + C.$$

We have $z = MS$, and when $s = 0$, $MS = AF$. Assuming $\int ds \cos v$ is 0 for $s = 0$, we have

$$\int ds \cos v = FS - MS + AF.$$

We need to look more closely at this integral.

6.7 Paragraph 24

From previous work,

$$Mm = ds = \frac{x \, dx}{\sqrt{x^2 - y^2}},$$

and the surface area AVM may be written in two ways:

$$\frac{1}{2} \int ds \cos v = \frac{1}{2} \int \frac{x \, dx \sqrt{b^2 + y^2}}{\sqrt{x^2 - y^2}}.$$
Thus we want the angle v to be such that $\int ds \cos v$ leads to $\int ds \sqrt{b^2 + y^2}$.

6.8 Paragraph 25

Euler now obtains v from $VQ = \sqrt{b^2 + y^2}$ by taking a constant k larger than, or equal to, the largest possible value of VQ along the base curve, then setting \[
\cos v = \frac{\sqrt{b^2 + y^2}}{k}.
\]

Thus the surface area is given by \[
\frac{1}{2} \int ds \sqrt{b^2 + y^2} = \frac{1}{2} k \int ds \cos v.
\]

Geometrically this is \[
\frac{1}{2} k(FS + AF - MS).
\]

6.9 Paragraph 26

Recall that r is the radius of the osculating circle to AM at M. After a bit of work Euler obtains \[
MS = z = \frac{k^2 r \sin^2 v \cos v}{k^2 \sin v \cos v - y \sqrt{x^2 - y^2}}.
\]

6.10 Paragraph 27

Euler uses this last characterization of MS to show how to derive MS geometrically. With the angle and distance in hand, the point S is found. Doing this for each M gives the rectifying curve.

To this end [Figure 5] he takes MK perpendicular to the tangent MQ so that $MK = k$. Then he forms the semicircle KPM with diameter MK, where P is the point on the semicircle such that $KP = \sqrt{b^2 + y^2}$. (Euler does this geometrically.) Then he takes R on MK such that $MR = r$, the radius of the osculating circle. Next he takes MT perpendicular to MP at T. He marks X on KP so that \[
PX = \frac{DQ \cdot MQ}{MP}.
\]

Finally, \[
MS = \frac{KP \cdot MT}{KX}.
\]

Euler states that the distance MS can be found easily for each M, so S is found and the resolving curve is known.
To end, Euler returns to the case where AM is a circle. The curve FS constructed above is the same curve that Leibniz derived [4]. Euler notes however that the solution is not FS, as Leibniz said, but rather $FS - MS + AF$. He ends with modest triumph, "Thus in this way, we have not only emended the Leibnizian construction, which was suitable only for scalene cones, but we also extend it to the cones whose bases are arbitrary figures."

References

Appendix 1

Pierre Varignon’s sketch, on the dimensions of the surface of a cone that is oblique to a circular base, by means of the length of a curve whose construction depends only on the quadrature of the circle.\footnote{Varignon, Pierre, *Schediasma de Dimensione Superficiei Coni ad basim circularem obliqui, ope longitudinis Curvæ, cujus constructio `a sola Circuli quadratura pendet*, Miscellanea Berolinensia, ad incrementum scientiarum ex scriptis Societati Regiæ Scientiarum exhibitis edita III, 1727, pp. 280–284.}

Now for many previous centuries the surfaces of cones whose bases are circular and standing upright [i.e., a right cone] have been known to have a rectangular area that depends on the quadrature of the circle. Not so for the oblique case, where I knew no one who had determined their surface area. Here is the curve that provides their areas by its length and whose construction depends on nothing other than the quadrature of the circle.

I. [See the diagram at the end.] Let the cone of any obliquity you like be $AHDZAB$, with base the circle $AHDZA$, vertex B, and height BC perpendicular at C to the plane of the base $AHDZA$. From that point C through the center O of the base, let the diameter DA be produced indefinitely in the direction of S. Then on the diameter AD let there be the bases of two ordinates as close to each other as you like, GH and gh, from whose extremities G, H, h to the vertex B are drawn the lines GB, HB, and hB. Finally from the point h let there be drawn hk perpendicular to HB at k so from the center B through h there will be the indefinitely small circular little arc hk.

II. Now since BC is normal to the base plane $AHDZA$ (I.) it follows that planes ABC and $AHDZA$ are perpendicular to one another. Thus, since HG is indeed perpendicular to their common section AD (I.), it will also be perpendicular to the plane ABC and thus also to the line GB.

\footnote{Translator’s note: I have modernized the notation and formatting somewhat. Those interested in details of the history of mathematical notation should look at the original. All footnotes and bracketed comments are mine.}

\footnote{The point k is not labelled, but lies directly over the point labeled K in the figure. The point K is not used in this paper, but it is in the Leibniz paper that follows it.}
Therefore setting $AO = r$, $AG = x$, $GH = y$, $CD = a$, $BC = b$\footnote{Varignon displays this as $BH = V(HGq. + GBq.)$ using a large V for $\sqrt{}$ and $q.$ to abbreviate quadratus. As was customary at the time, Varignon writes yy for y^2, etc. I will use modern notation. Further, Varignon writes this string of equations inline. I display them in the modern style.}{3}

\[BH = \sqrt{HG^2 + GB^2} \]
\[= \sqrt{HG^2 + BC^2 + GC^2} \]
\[= \sqrt{y^2 + b^2 + (2r + a - x)^2} \]
\[= \sqrt{y^2 + b^2 + 4r^2 + 4ar + a^2 - 4rx - 2ax + x^2}. \]

From the circle $AHDZA$ comes $y^2 = 2rx - x^2$ [so we have further:]

\[[BH] = \sqrt{4r^2 + 4ar + a^2 + b^2 - 2rx - 2ax}. \quad \text{[Eq. 1]} \]

Let c be [such that]

\[c^2 = 4r^2 + 4ar + a^2 + b^2 \]
\[= (2r + a)^2 + b^2 \]
\[= AC^2 + BC^2 \]
\[= AB^2 \]

and also

\[f = r + a = OC. \]

[From this and Eq. 1]

\[[BH] = \sqrt{c^2 - 2fx}. \quad \text{[Eq. 2]} \]

[Since $Hk = -d BH$,] this will make\footnote{Varignon has HK, but I believe K is a typo for k in the next two displayed equations.}{4}

\[Hk = \frac{fx}{\sqrt{c^2 - 2fx}} \]

positive because of the alternate increasing and decreasing of $AG (x)$ and BH. Then

\[hk = \sqrt{Hh^2 - Hk^2} \]
\[= \sqrt{dy^2 + dx^2 - dx^2 - \frac{f^2}{c^2 - 2fx}}. \]
Now with the equation of the base, \(y^2 = 2rx - x^2 \), this gives

\[
\pm dy = \frac{rdx - xdx}{\sqrt{2rx - x^2}}.
\]

So

\[
[hk] = \sqrt{dx^2 \left(\frac{(r-x)^2}{2rx-x^2} + dx^2 - dx^2 \frac{f^2}{c^2 - 2fx} \right)}
\]

\[
= dx \sqrt{\frac{r^2}{2rx-x^2} - \frac{f^2}{c^2 - 2fx}}
\]

\[
= dx \sqrt{\frac{c^2r^2 - 2fr^2x - 2f^2rx + f^2x^2}{(2rx-x^2)(c^2 - 2fx)}}.
\]

Now setting \(g = r + f = 2r + a = AC \),

\[
[hk] = dx \sqrt{\frac{c^2r^2 - 2fr^2x + f^2x^2}{(2rx-x^2)(c^2 - 2fx)}}. \quad \text{[Eq. 3]}
\]

Thus [from Eq. 2 and Eq. 3]

\[
HBh \left(\frac{HB \cdot hk}{2} \right) = dx \frac{\sqrt{c^2r^2 - 2fr^2x + f^2x^2}}{2\sqrt{2rx-x^2}}
\]

will be the sought element of the surface of the cone, from whose summation [integral] would come the surface at hand, with the help of the length of the following curve.

III. Let the semiperimeter of the circle \(AHD \) be rolled out in a line \(AQ \) equal to it and perpendicular to the diameter \(AD \). Of course the unrolling of the first point \(D \) describes a curve \(DQ \). Then taking any constant \(m \) you please, draw from \(Q \) a line \(RQ \), perpendicular to \(AQ \), such that

\[
\frac{RQ}{AQ} = \frac{BC}{2m}.
\]

So

\[
RQ = \frac{AQ \cdot BC}{2m} = \frac{AHD \cdot BC}{2m}.
\]

Then the rectangle \(QS \) is completed and its side \(RS \) produced to \(F \) so that

\[
\frac{SF}{AS} = \frac{AO}{BC}.
\]
Then
\[SF = \frac{AS \cdot AO}{BC} = \frac{RQ \cdot AO}{BC} = \frac{AQ \cdot AO}{2m} = \frac{AHD \cdot AO}{2m}. \]

Next after drawing the lines \(AR \) and \(AF \) and taking the indeterminate line (on \(AQ \)) \(AL = AH \), the arc rolled out on it by \(AL \) describe \(LM \) parallel to \(QR \).

From the point \(M \) (where the line [i.e., \(LM \)] meets \(AR \)) make the indefinite line \(MP \) parallel to \(AQ \) so that it meets the lines \(AS \), \(AF \) at \(E \), \(N \) [respectively].

Finally for \(MP \) make it that
\[NP = \frac{OC \cdot GH}{2m}, \]
and so on, everywhere.

I say that this is the curve \(APF \) passing through each of the points \(P \) whose product \(m \cdot AP \) of any arc \(AP \) by the constant \(m \), whatever it may be, is equal to the corresponding part \(AHB \) of the surface of the cone that is sought.

Proof

1. Since (by construction) there is
\[\frac{2m}{BC} = \frac{AQ}{RQ} = \frac{AL}{LM} = \frac{AH}{AE}, \]
then
\[AE = \frac{BC \cdot AH}{2m}, \quad [\text{Eq. 4}] \]
and so the parallel element is
\[\delta p = \frac{BC \cdot Hh}{2m} \]
by the notation in II. Since the circle \(AHDZA \) yields
\[Hh = \frac{AO \cdot Gg}{HG}, \quad [\text{Eq. 5}] \]
then
\[[\delta p] = \frac{br \, dx}{2m \sqrt{2rx - x^2}}. \]

My correction: Varignon has \(HL \) instead of \(AL \).

Varignon restarts the sequence of Roman numerals. For clarity, I have changed this second series of steps to Hindu-Arabic numerals.
2. Further, (by construction) not only is
\[
\frac{BC}{AO} = \frac{AS}{SF} = \frac{AE}{EN} = \frac{BC \cdot AH}{EN} \quad (1)
\]
[from Eq. 4]
Now with \[EN\] = \(\frac{AO \cdot AH}{2m}\)
and also
\[NP = \frac{OC \cdot GH}{2m}\],
then
\[EP = \frac{AO \cdot AH + OC \cdot GH}{2m}\]
Next (taking \(HV\) perpendicular to \(gh\) at \(V\)) its element will be
\[\delta P = \frac{AO \cdot Hh + OC \cdot Vh}{2m}\]
(Then from the previous section [Eq. 5], using the equation \(y^2 = 2rx - x^2\),
with \(f = r + a\),
\[\delta P = \frac{\frac{r^2dx}{2m\sqrt{2rx - x^2}} + \frac{(r + a)(rdx - xdx)}{2m\sqrt{2rx - x^2}}}{2m\sqrt{2rx - x^2}}\]
\[= \frac{dx(2r^2 + ar - rx - ax)}{2m\sqrt{2rx - x^2}}\]
\[= \frac{(2r^2 + ar - fx)dx}{2m\sqrt{2rx - x^2}}\].

3. Therefore there will be the element \(pP\) [of the arc length] of the curve \(APF\), namely
\[\sqrt{\delta p^2 + \delta P^2} = \frac{dx\sqrt{b^2r^2 + 4r^4 + 4ar^3 - 4fr^2x + a^2r^2 - 2farx + f^2x^2}}{2m\sqrt{2rx - x^2}}\]
\[= \frac{dx\sqrt{c^2r^2 - 2fgrx + f^2x^2}}{2m\sqrt{2rx - x^2}}\] (since \(b^2 + 4r^2 + 4ar + a^2 = c^2\))
\[= \frac{HBh}{m}\].

\[7\] I correct a printing error in the original.
Therefore \(H Bh = m \cdot Pp \), whose integral, or such a summation, is the sought surface of the part of the cone, \(AHB = m \cdot AP \), and so on for other parts of this surface obtained in this way. Thus the integral extends so that the surface area of this oblique cone = \(2m \cdot APF \). \(Quod \ erat \ Dem. \)

IV. From this measure of the surface of an oblique-angled cone that of the common type, given by a right angle, also follows. Now if the cone \(AH DZ A B \) be a right cone, then certainly its height \(BC \) coincides with \(BO \) – for this reason making both [segments] equal and normal to the base of the cone, which would nullify \(OC \). Then (from 2) the curve \(APF \) has ordinate

\[
EP = \frac{AO \cdot AH + OC \cdot CG}{2m},
\]

reducing to

\[
\frac{AO \cdot AH}{2m} = EN,
\]

while the abcissa (see 1) remains the same:

\[
AE = \frac{BC \cdot AH}{2m}.
\]

The curve \(APF \) would be changed into the right line \(ANF \), and its arc \(AP \) changed into \(AN \). From this in the right cone, it would follow that

\[
m \cdot AN = m \cdot AP = AHB. \quad (\text{from 3})
\]

And then

\[
AN = \sqrt{AE^2 + EN^2} \quad (\text{from 3})
= \sqrt{(BC \cdot AH)^2 + (AO \cdot AH)^2}
= \frac{AH \sqrt{BC^2 + AO^2}}{2m}.
\]

(Then because \(BO = BC \) and is perpendicular to the plane \(AH DZA \) and thus also to the radius \(OH = AO \),)

\[
[AN] = \frac{AH \cdot \sqrt{BO^2 + OH^2}}{2m}
= \frac{AH \cdot BH}{2m}.
\]
Thus in this case
\[
\frac{AH \cdot BH}{2} = AHB,
\]
or the portion \(AHB \) of the right convex cone will be equal to the product
\[
\frac{AH \cdot BH}{2}
\]
from half of the side \(BH \) times the corresponding base arc \(AH \). Thus the entire surface of such a convex cone taken together will be equal to the product of half the side and the whole circuit of the base, which geometers, by other reasoning, had observed long before now.

The measure of the surface area of the same right-angle cone also follows immediately from the oblique-angle element
\[
HBh = \frac{dx\sqrt{c^2r^2 - 2fgx + f^2x^2}}{2\sqrt{2rx - x^2}}, \quad \text{(from 3)}
\]
in which \(c = AB \) and \(f = OC \). Now since the surface of the rectangular cone forces \(AB = BH \) and \(OC = 0 \), or \(c = BH \) and \(f = 0 \), the oblique-angle element becomes, in the right-angle case,
\[
HBh = \frac{dx\sqrt{r^2BH^2}}{2\sqrt{2rx - x^2}} \cdot \frac{BH}{rdx}
= \frac{2}{2} \sqrt{2rx - x^2}
= BH \cdot OH \cdot HV
= \frac{BH \cdot HG}{2},
\]
and after integrating, or summing, it will give (and quickly) the surface of the right-angle cone
\[
ABH = \frac{BH \cdot AH}{2},
\]
etc., as above.

I will not dwell upon this any longer, but only wanted it known how great is the affinity between the preceding case of the oblique-angle cone and the common right-angle cone.
V. This part looks at the curve APF (III.) that yields the measure of the surface of the oblique-angle cone.

1) It establishes the angle ADB at F across from A(148x624) with the ordinate SF and the angle ABC at A across from S with the axis AS. Then the side AB of the oblique cone $AHDZAB$ is normal to this curve at A, which, if it is right, also has its side AB normal at the point A to the line ANF which thus has been added to the curve.

2) Then the curve will be such that the largest of its ordinates EP corresponds to

$$AG = \frac{AC \cdot AO}{OC},$$

which will always be larger than AO and less than AD.

3) The total segment of that curve, $ANFPA$, and any desired indeterminate part $ANPpA$, can be completely rectified. This is possible from the known construction of the quadrature of the circle $AHDZA$. Yet you would not say the areas $FPAS$, $PpAE$ are both quadrable, since the size of the triangles $FNAS$, NAE, though rectilinear, depend on the quadrature of this circle.

4) However, the length of APF and any part of it AP is measured by the quadrature of the curve placed between two parallel asymptotes with the distance between them the diameter AD of the base of the cone, and [the length] is expressed by the equation

$$z = \frac{\sqrt{c^2r^2 - 2fgrx + f^2x^2}}{2\sqrt{2rx - x^2}},$$

whose coordinates, normal to each other, are x, z.

It may be noted that if the perpendicular BC to the base plane $AHDZA$ of the oblique cone $AHDZAB$, which here [in the diagram] falls outside of the base, were to fall inside, over OC and with the same point D, nothing different from the preceding would occur, except the change of the sign of the quantity a or DC, and with the removal of this term the same construction would remain and the use of the above curve APF.

8He says *quadrari*, to be found by making a square.
The figure from Varignon’s paper, which is also used by Leibniz’s addendum, immediately following in the same volume of the *Miscellanea*.
XIX.

PETRI VARIGNONIS

Schediasma

de

Dimensione Superficiæ Coni ad basim

circularem obliqui, ope longitudinis Cur-

væ, cujus constructio à sola Circuli

quadratura pendet.

Am à multis retrò sæculis notum est conorum, basibus

circularibus recte insistentium superficies, mensuram in rectangulis

habere, à quadratura circuli pendentem: At non item in obliquangulis, quorum superficies qui definierit, neminem novi. Ecce curva quæ horum mensuram sua longitudine præbet, cujusque constructio non aliunde quam à quadratura circuli pendet.

I. Sit obliquitatis cujusvis Conus A H D Z A B, bæseos circularis A H D Z A, verticis B, altitudinis B C perpendicularis in C ad planum bæseos A H D Z A; ex quo puncto C per bæseos centrum O sit diameter ejus D A indefinitæ producitur versus S; Hanc ad diametrum A D int bæseos ordinatæ duæ, invicem quam proximæ quævis G H, g h, ex quorum extremitatisibus G, H, h per coni verticem B, deuntur rectæ G B, H B, h B. Tandum ex puncto h singatur h k perpendiculis ad H B in k, sive ex centro B per h sit circularis arculus indefinitæ pars h k.

II. Jam cum sit (art. 1) B C normalis ad planum bæseos A H D Z A, liquet, plana A B C & A H D Z A ad invicem esse perpendicularia; atque
que adeo cum HG sit quoque (art. i.*) perpendicularis ad commum

Ergo positis A O = r, A G = x, G H = y, C D = a, B C = b, erit

Unde fit H K = d x: V (c c = 2 f x) positiva, pro-

Igitur superficies conicæ quæfœ elementum

III. Fingatur semiperipheria circularis A H D evolvi in rectam ipsi

N n

Dico
Dico eam esse Curvam APF per omnia ejusmodi puncta P transfixi-
tem, quae producunt m. AP ex arcu quovis ejus AP per constantem m,
ubique reddat, æquali respondenti portioni AHB conica superficiei
quaestae.

Demonstr. I. Siquidem (constr.) ubique est 2m : BC == AQ : RQ
== AL : LM == AH : AE. Est etiam ubique AE == BC. AH : 2m, & ipsi
parallellum elementum ejus dp == BC. HH : 2m (juxta nomina art. 2. &
circulum AHDZA exigentem HH == AO. GG: HG) == bdx : 2m.

II. Pariter cum sit (constr.) non modo BC: AO==AS: SF==AE:
EN (num. 1.) == (BC: AH: 2m): EN == AO: AH: 2m. Sed etiam
NP==OC. GH: 2m; erit EP == AO. AH+OC. GH: 2m, & elementum
equis (duae HV perpendiculari in V ad gh) HF == AO. HH+OCC.
VH: 2m (ex premisis nominibus & ex aequatione yy==2r x −xx
art. 2.) == (r x dx: 2m V(2r x −xx)) = (r+a) (r dx −xx dx: 2m
V(2r x −xx) == dx (2r a −xx) : 2m V(2r x −xx) [art.
dante f = r+a] == 2r a −xx: dx: 2m V(2r x −xx).

III. Ergo (num. 1. 2.) erit Curvæ APF elementum PP vel V(dp qu.
+ dp qu.) == dx V(bbr + 4rr + 4ar + 2ar x
+ fxx): 2m V(2r x −xx) (Propert bb + 4rr + 4ar + aa == cc)
== dx V(crr −2fr x + fxx): 2m V(2r x −xx) [art. 2.] == HBH: m.
igitur erit HBH == m. PP, cuius integrale, seu qualium summatio est coni-
ca superficiei quaestae portio AHB == m. AP; & sic de ceteris ejus-
dem superficie portionibus hac ratione sumptis: Unde pater integrum
hanc Coni obliqui superficiem esse == 2m APF. Quod erat Dēm.

IV. Ex hac obliquangula conica superficie mensura fluid utro vul-
garis ea, quae rectangula tribuitur. Nam si Conus AHDZAB fieret
reclvs, is nimirum, cujus altitudo BC, conversa in BO, hac ratione fa-
stit æquali & normali ad Coni basim, aboleret OC; tunc Curva
APF ordinatis EP (art. 3. num. 2.) == AO. AH+OC. GG, : 2m
evadentibus == AO. AH: 2m == EN interim dūm aecissē manerent ex-
dem AE (art. 3. num. 1.) == BC. AH: 2m, Curva hæc APF mutaretur
in rectam ANF, & ejus arcus AP in AN: Unde hoc in Cono redangu-
lo foret m. AN==m. AP (art. 3. num. 3.) == AHB. Atqui A N ==
V(AEq.
$V(AE \cap FEN) = V(BC, AH) q. \times (AO, AH) q. : 2m = AH \times (BC, AO, BQ, AO, OH) q. : 2m = AH \times (BO, OH, OH) q. : 2m = AH, BH = 2m. \text{ Ergo hoc in eodem cau} \text{e erit } \frac{2m}{2} = AH, BH = 2m. \text{ Coni superficies convexa pariter erit } \frac{2m}{2} \text{ an} \text{s produc} \text{to } \frac{2m}{2} \text{ ext dimidio latere BH per respondentem baseos arcum } AH : \text{ Unde tota hujusmodi Coni superficies convexa pariter erit } \frac{2m}{2} \text{ an} \text{s produc} \text{to ex dimidio later} \text{e per totum baseos ambitum ; quod Geometris alia ratione jam pridem notum est.}$

Eadem Conicæ superficies rectangularæ mensura statim fluitt etiam ex obliquangula elemento HB h (art. 2.) = $dx V(ccr - x^2 + f^2 f x)$ in quo sunt (art. 2.) $c = AB, f = OC$. Nam cum retangula superficies conica exigat AB = BH & OC = o, seu $c = BH, f = o$; itid obliquangula elemento in rectangula sit $HB h = dx V(yy - BH q.) : 2V(2r x - xx) = (BH:z) (r dx: V(2r x - xx)) = (BH:z) (OH, HV, HG) = BH, Hh = 2$; atque integrando, fave summando erit (ut mox) rectangulæ superficie Conica portio ABH = BH, AH = 2, &c. ut suprior.
4. Longitudo autem APF, & pars ejus quæ vis AP mensuram habent a Quadratura Curvæ positæ duas inter asymptotas parallelas distances ab invicem quantitate diametri AD baseos Coni, & expressa per æquationem \(z = V(cerr - 2fgx + fxx) = 2V(2rx - xx) \) cujus coordinatae ad invicem normales sunt \(x, z \).

Notandum si perpendicularis BC ad planum baseos AHDZA Coni obliqui A H D Z A B, quæ hic cadit extra basim istam, caderet intra, super OC, aut in ipsum punctum D; nihil inde varietatis precedentibus eventurum esse, præter mutationem signi quantitatis \(a \) vel DC, aut hujus quantitatis extinctionem, manentibus semper iisdem constructione & usu curvæ superioris APF.
Appendix 2

An Addition by G.G.L. Setting forth an explanation of the surface area of any conoidal surface whatsoever; and a step-by-step explanation of the surface area of a scalene cone, so as this or that portion whatsoever is presented equal to a rectangle, by means of the length of a right curve constructed by ordinary geometry.\[1\]

The surface area of a right cone was already laid out by Archimedes and it is equal to a given circle. It is certain that the ancients did not arrive at the surface area of a scalene cone. Ægidius [Gilles] de Roberval told me when I was young that he had found a solution for it, but he did not tell me how he had managed it, nor was I able to find anything about it among his papers. In fact now with the same method that appeared in the previous sketch [Appendix 1], we will easily be able to give plane figures, constructed by ordinary geometry, that are equal to the surface area not only of scalene cones, but also of conoids generated by lines BH (see the Figure above) through a fixed point B taken above and passed along any curve Hh whatsoever in the plane AHC below.

Now let BC be normal to the plane below, and therefore to the line AC, whose directrix HG is applied normal to the curve Hh and meeting AC at G. It is clear that\[3\]

$$BG = \sqrt{BC^2 + CG^2},$$

which is normal to HG, and thus

$$BH = \sqrt{BG^2 + GH^2}.$$

Now GH is given from AG by the nature of the curve, and BC and AC are given. Then CG is the sum or difference of CA and AG. Further, BH is also given from AG. Therefore also is given the ratio of the momentary increment,

Translator’s note: This paper appears right after Varignon’s paper (Appendix 1) on the scalene cone. They share a diagram, reproduced at the end of Appendix 1. I have modernized the notation and formatting somewhat. Those interested in details of the history of mathematical notation should look at the original. All footnotes and bracketed comments are mine.

The text has $H(H)$, but clearly Hh is meant

\[3\]The equation in the text is typeset as $BG = V(BC \cdot BC + CG \cdot CG)$.
or element, of the same BH and certainly of HK itself to HV, the element of AG. (Where $[K]$ is placed down [i.e., directly below k] from the normal hk from h to BH.)

Now if the square of HK is subtracted from the square of Hh there remains the square of hK, the element of the arc length of the curve. This line is set in ratio to HV, the increment of AG, and this ratio is called r/a, where a is any constant whatsoever assumed once arbitrarily, and r is determined from AG. Then it will be that

$$hK = \frac{r}{a} dAG.$$

But half of the rectangle BH by hK is equal to the triangle BHh, which is the element of the surface area of the conoid. So if the line $(r/2a)BH$ (which will clearly be to BH as r to $2a$) is applied to dAG, that is to Gg, or if GH is always summed from G in the direction of H, then a curvilinear figure will be made whose element is $(r/2a)BH dAG$, the same as the element of the surface of the conoid.

Thus the appropriate part of this figure summed will be equal to the corresponding part of the surface of the conoid, both lines being derived from the point above and the base curve. Hence the surface of any conoid can be laid out by ordinary geometry giving a plane figure equal to it, if the base of the conoid AHh is a figure from ordinary geometry.

Now Archimedes presented the surface of a right cone, or a part of it, as equal to a circle, or a part of a circle. Then the area of a circle, or a part of it, may easily be turned into a rectilinear figure through the length of a particular curve (an arc of a circle, in fact). From this the desired [curve] was found in a most elegant way by that most renowned man, Pierre Varignon, as laid out immediately above [Appendix 1], whereby the plane figure equal to the surface area of the scalene cone can be measured by the length of a certain curve.

Now the curve that he sets forth is not ordinary, but transcendental, which it might not have been if it did not require the quadrature [tetragonismo] of the circle or the rectification of the arc of the circle for its construction. I prefer to seek an ordinary curve that would provide the same [result]. Here is how I proceeded. In the same way as before, let GW be taken from G towards D, which will be to AG as CD is to the radius DO and let BW be connected, which will yield

$$BH = \sqrt{c^2r^2 - 2rfgx + f^2x^2}.$$

4The r and a here are not those of Varignon’s paper. Leibniz uses $(r : a)$ where I have r/a, and similarly elsewhere.

5I use the word “length”; Leibniz says “by extension in a line.”
[From Varignon’s paper: \(OA = r\) is the radius of the circle, \(CD = a\), \(AB = c\), \(OC = f = r + a\), \(AC = g = r + f\). The expression follows by a relatively straightforward calculation from \(BW = \sqrt{CW^2 + BC^2} = \sqrt{(OW + OC)^2 + BC^2}\), using \(BC^2 = c^2 - g^2\) and \(OW = r - AG - GW = r - (1 + a/r)x\).

Then I place \(A\) to be the farthest point of the diameter \(AD\) from \(B\). \(HI\) is led from the point \(H\) to the line \(AC\) so that, when \(O\psi\) is led from \(O\) normal to \(HI\), \([O\psi]\) is to the radius \(HO\) as half of \(BW\) is to the constant line, which is larger than half of \(BA\). From the same line \(HI\), \(O\phi\) is taken from the center \(O\) perpendicular to \(CO\), and continued on the same side as \(H\) to make \(\phi\) [on \(HI\)]. Likewise all this is done to points \(h\) and \(g\), as \(BW\) was drawn, so on to \(hi\), and \(O\phi\) is made to \((\phi)\) [on \(hi\)].

Now \(O\phi\), \((\phi)\), etc., are equal to \(I\Omega\), \(i\omega\), etc., the ordinates applied normal to \(OI\), \(Oi\), etc., that make the curve \(\Omega\omega\), whose tangent \(\omega T\) meets \(AC\) at \(T\). Finally along \(AC\) from \(I\) is taken \(IX\) to the side where \(IH\) [and] \(ih\) approach each other. Then \(IX\) is to \(IO\) as \(TI\) is to \(TO\).

From any such point \(X\) found in this way the normal \(XY\) is taken, running to the corresponding position \(Y\) on the given line \(HI\). This will be the applied ordinate of a new curve \(Y(Y)\). Then with the elementary arc between point \(Y\) and \((Y)\), and with the intercept defined by the process given above, and with the above-mentioned constant that is no less than \(\frac{1}{2}BA\), the included rectangle will be equal to the triangle \(BIIh\), which is, of course, the element of the surface of the scalene cone. Thus by the evolution or extension of the appropriate curve \(Y(Y)\) in a line, if the thread rolled out is led along using the same constant, a rectangle will be produced equal to \(ABDHA\), the surface of half the scalene cone, or any portion of it (made up, of course, of half of the line from \(B\) and the arc of the base).]
Additio G. G. L.

Ostendens Explanationem superficii conoïdalis cujuscunque; & speciatim explanationem superficii Coni scaleni, ita ut ipsi vel ejus portioni cuicunque exhibeatur rectangulum æqualis, interventu extensionis in rectam curvæ, per Geometriam ordinariam construenda.

S

uperficies Coni recti jam ab Archimede explanata est; & æqualis ei circulus assignatus. Coni Scaleni superficiem veteres, quod confiteri non avertere. Aegidius Robervalius, me juvente ajebat, ejus explanationem sibi esse notam, sed qualia habuerit non dixit, nihilque ea de re inter ejus schedas repertum accepi. Equidem hodie ad eum modum quo processum est in Schediasmate precedenti, possumus facile dare figuras planas easque per Geometriam ordinariam construendas, non tantum quæ æquantur superficiebus coni Scaleni, sed etiam cujuscunque Conoicidis generati recta BH (vide eandem quæ supra Figuram) per punctum B, constans, in sublimi transiente, & circumdata per curvam quamcunque H (H) in plano subjecto AHC posita.

Nam cum BC sit normalis ad planum subjectum, adeoque & ad rectam AC, quæ sit directrix ipsarum HG normaliter applicatarum ex curva HH, & ipsi AC occurrentium in G; patet BG = V(BC. BC + CG. CG) fore normalis ad H G; atque adeo BH fore V(BB. BB + GH. GH). Datur autem GH ex AG per naturam curvæ; & BC, AC sunt datae, & CG est summa vel differentia ipsarum CA, AG; habetur ergo & BH ex AG. Ergo & ratio datur incrementi momentanei seu elementi ipsarum BH; nempe ipsius HK (si ponatur ex h demissa in BH normalis h k) ad HV elementum ipsarum AG. Quod si jam quadratum ipsius HK detrahatur à quadrato ipsius H h, elementi arcus curvæ, supererit quadratum ipsius HK, cujus recta adeo etiam debitur ratio ad HV, incrementum ipsius AG; qua ratio vocetur r; sit a, positæ a

N n
constante quacunque pro arbitrio semel assumta, & r determinata ex AG. Erit ergo hK = (r : a) dAG. Sed dimidium reāanguli ex B H in hK est æqualis triangulo BHH, id est elemento superficii Conoidis, ergo si reā (r : 2a) BH (nempe qua sit ad BH ut r ad 2a) accommodetur ad dAG, id est, ad Gg, seu sumatur semper in ipsa GH ex G versus H; fiat figura curvilinea, cujus elementum erit (r : 2a) BH. dAG idem cum elemento superficii conoidis. Itaque ipsius hujus Figure portio
ritè sumta æquabitur respondenti superficii Conocidis portioni, binis reāis ex puncto in sublimi, & arcu basis comprehensis; & proinde quævis superficies Conoïdalis explanari potest, adhibita figura plana ei æquali, per Geometriam ordinariam construenda, si ipsa AHH basis Conoïdalis, sit figura Geometria ordinaria.

Sed quia Archimedes Circulum, vel Circuli portiones, superficieæ co-ni reā vel ejus portionibus æqualibus exhibuit; Circuli autem vel ejus portionum area vel conversio in figuram reāclinae faciliime haberur per extensionem curvæ (nempe ipsius arcus Circularis) in rectam: hinc à Viro Celeberrimo Petro Varignonone quæsitus est inventusque modus elegans paulo ante positus, quo figura plana æqualis superficii coni scale-ni etiam mensurari potest, per extensionem curvæ alicujus in rectam. Cum vero, curva illa quam exhibet non sit ordinaria, sed transcendentis, quamvis non nisi tetragonismo Circuli seu rectificatione arcus Circularis ad constructionem indiget; placuit mihi querere curvam ordinariam quæ idem præflet, seu cujus rectificatione exhibeat superficieæ Coni Scaleni vel ejus portioni cuivis æqualis figura reāclinae. Hoc ita sum
consecutus:

Lisdem quæ antea positis, à puncto G versus D sumatur CW, quæ sit ad AG ut CD ad radium DO & jungatur BW, quæ erit V(cca—xxvff—xxvff—xxvff—xxvff—xxvff):r. Pono autem A esse extremum diametri AD remotius à B. Ex puncto H ad rectam AC ducatur HI ita ut ex O duēa ad HI normalis O sit ad HO radium ut dimidia BW ad rectam constan-
tem, quæ sit major dimidia BA; Et reāa HI ipsam Φ ex centro O perpendiculariter ad CO educam ad partes H, sectet in Φ. Eadem omnia siant ad puncta h & g, ut ducatur BW, ducatur & hi, quæ ipsam Φ sectet in (Φ). Jam ipsis Φ, Φ (Φ), &c. æuales IΩ, iω, &c. ordinatim
tim applicentur normaliter ad OI, Oi, &c. ut fiat curva $\Omega \omega$, cuius tangens ΩT occurrat ipsi AC in T. Tandem in AC ex I sumatur IX ad partes ad quas conversunt IH, ib, quae IX sit ad IO ut TI ad TO; & ex puncto X quovis, hoc modo reperto, normaliter eduxa XY, occurrens respondenti recta positione data HI in Y, erit ordinatim applicata curva nova $Y (Y)$ cuius sub arco elementari inter puncta Y & Y prae- scripta ratione determinanda intercepto, & sub constante supradicta, non minore quam $\sfrac{1}{2} BA$, comprehensum rectangulum aequabatur triangulo BHH, nempe elemento superficie coni scaleni: atque adeo evoluti- one seu extensione debita curva $Y, (Y)$ in rectam, filo evoluto ducere in ipsam constantem supradictam, exhibebitur rectangulum aequale ipsi $ABDHA$ superficie dimidiat coni Scaleni vel ejus portioni (rectis sic- licet binis ex B & arcu basis comprehensa) cuicunque.

XX.

JOH. WILH. WAGNERI

Annotationes ad Eclipsin Solis,

Maxima in obscuratione aër colorum simulabat cinctum, & lux dies superest crepata erat, pallida vel glauca, legenda tam adhuc scriptura, & rebus procul mediterrer discernendis sufficiens.

Stella, praeter Venerem seu hesperum, nullae apparebant, liceit Spectatores, visu quorum plurimi pollebant, in coelum hinc inde oculorum aciem direxerint. Aër & erat magis, ac ante & post, figidiusculus, ros non cadebat, hirundines in volatu suo, ad terram plus tamen de- midum, perseverabant.

Circa