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Swept Wind Turbine Blade Aeroelastic 
Modeling for Loads and Dynamic Behavior 

 
 Scott Larwood Mike Zuteck 
 UC Davis MDZ Consulting 
 Davis, CA Clear Lake Shores, TX 
 

ABSTRACT 
A dynamic modeling effort of a swept-blade wind turbine rotor has been conducted.  The 
swept-blade concept was used for increased energy capture without an increase in the 
turbine loads.  The work is part of a Department of Energy contract for increased wind 
energy capture at low-wind speed sites.  The blade works by twisting to feather under 
aerodynamic loads at the outboard region.  Conceptual design of the blade resulted in a 
28 m blade radius for eventual testing on a normally 50 m diameter turbine.  The blade 
was modeled with codes developed by the National Renewable Energy Laboratory.  
Comparisons were made to an unswept rotor of the same diameter and a baseline 50-m 
rotor.  The results demonstrated the twisting and load-reduction behavior of the swept 
rotor.  Little detriment in the power curve was shown with the swept blade, and 
substantial power increase over the 50 m baseline was obtained in below-rated power. 

NOMENCLATURE 
English Variables: 
CL = lift coefficient  
CLΛ = lift coefficient adjusted for blade sweep 
CPO = peak power coefficient 
k = generator torque control constant, N·m/rpm2 
Qgen = generator mechanical torque, N·m 
R = rotor radius, m 
 
Greek Variables: 
λO = optimum tip-speed ratio 
Λ = blade sweep angle, radians or degrees 
ρ = atmospheric density, kg/m3 
ωgen = generator rotational speed, rpm 
 
Acronyms: 
DOE = United States Department of Energy 
GL = Germanischer Lloyd 
IEC = International Electrotechnical Commission 
LWST = Low Wind Speed Technology 
NREL = National Renewable Energy Laboratory 
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INTRODUCTION 
This paper describes the dynamic analysis of a swept wind-turbine blade concept that was 
developed under a U.S. Department of Energy (DOE) program.  At the time of this 
writing, the wind power industry had experienced exponential growth in the last decade.  
The decrease in cost of wind power generation, however, has slowed due to the maturity 
of the technology.  All reductions in the cost of energy were now coming in small 
increments.  In this current engineering climate, the DOE initiated the Low Wind Speed 
Technology (LWST) program to move research in the direction of capturing more wind 
energy in low wind speed areas, thus positively affecting the economics for these regions. 
 
One thrust of the LWST program was in advanced rotor control concepts.  The main idea 
was to increase the rotor diameter for a given turbine rating without increasing the load 
envelope.  One concept (Lobitz, Veers et al. 1996) was to incorporate flap/twist coupling 
into the rotor with off-axis fiber orientation into the blade construction.  As the blade 
deflects in the flapwise direction, the tip would twist towards feather and reduce the 
aerodynamic loading.  A different physical mechanism, leading to similar aerodynamic 
load reduction, was analyzed by Zuteck (2002) and proposed earlier by Liebst (1986).  
This concept was to sweep the outboard-region rotor planform in the plane of rotation aft 
of the pitch axis.  The loads generated at the tip would introduce a moment about the 
pitch axis.  With sufficient blade torsional flexibility, the tip would twist towards feather, 
thus reducing the loads.  This concept is illustrated below in Figure 1. 
 

Wind 
Aero LoadsUndeflected 

Blade 

Unloaded PitchSection Axis

Twists toWind 
feather Pitch Axis 

Tip View 

Load Control through passive means
utilizing blade geometry 

Rotation
 

Figure 1.  Swept blade concept. 
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Zuteck outlined key design parameters for the concept that included the sweep-curve 
geometry and tip sweep.  He estimated that 4° to 7° of tip twist would be needed to shed 
loads for a 30 m blade.  This amount of tip twist would require that the torsional stiffness 
of the blade be decreased in comparison to typical straight-blade designs, but it was 
shown to be feasible through appropriate design modifications.  Liebst had also 
concluded that the torsional stiffness would have to be reduced for the concept to be 
successful. 
 
In 2004 the wind turbine blade division of Knight & Carver won a LWST contract 
administered through Sandia National Labs.  Knight and Carver assembled a team to 
design, manufacture, and test a rotor based on the swept-blade concept.  The rotor would 
be designed for atmospheric testing on a Zond Z-50 wind turbine with 750 kW rating.  
The rotor was to be designed according to the requirements of the International 
Electrotechnical Commission (IEC) Class IIA wind regime (IEC-TC88 2005).  The 
authors were responsible for the structural design and analysis of the prototype blade.  As 
will be shown in this paper, a dynamic analysis of the rotor using state-of-the art tools 
demonstrated the increased power capture of the rotor while maintaining turbine loads 
near baseline limits. 

METHODS 

Conceptual Design 
The design goal of the project was to increase annual energy capture of the baseline 
turbine by 5%-10%.  The rotor swept area was increased by 25% to increase the below-
rated energy capture by 25% for a straight-bladed rotor.  With sweep and twist, it was 
expected that the increase in below-rated energy capture would be 15%-20% and 
therefore would increase the overall annual energy capture by 5%-10%.  The turbine 
power rating would not be increased; therefore there would be no expected increase in 
above-rated energy capture.  For the Z-50 turbine, the rotor radius was increased from 25 
m to 28 m. 
 
Kevin Jackson of Dynamic Design Engineering, Inc. developed the planform for a 25 m 
blade as a baseline design case.  The 50-year extreme wind loads for the parked rotor 
were calculated for this baseline with a static load distribution.  Swept planforms of 28 m 
were then designed by maintaining a similar extreme-load root bending moment.  Airfoils 
developed by Wortmann and compiled by Althaus (1986) for wind power application 
were used.  Based on previous investigations comparing straight and swept rotors with a 
lifting-surface wind turbine analysis code, the lift coefficient (CL) was modified for 
sweep using the following relationship: 
 
   = CC  ΛΛ

2cosLL
(1) 

 
Where: 
CLΛ = lift coefficient adjusted for blade sweep 
Λ = blade sweep angle, radians or degrees 
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This is the same relationship used for modifying the lift coefficients of swept wings 
(Hoerner 1985).  The drag and moment coefficients were not modified. 
 
The maximum sweep at the tip was maintained within the envelope of the maximum 
chord for transportation considerations.  During this process the chord and twist 
distribution were changed to optimize the peak power coefficient (CPO). 
 
After the aerodynamic planform had been established, the structural design was 
performed using section analysis techniques.  The simplified extreme loads and operating 
loads were used for this process.  It became apparent that the blade would be designed for 
stiffness for the blade deflection constraints.  The section design was performed to 
maintain the blade deflection to one-half of the allowable clearance under rated operating 
conditions.  This requirement would be validated later in the dynamic analysis, which has 
a 1.6 safety factor for critical deflections.  The section properties were then used as input 
for the dynamic modeling.  In addition, the section properties were later validated with a 
finite-element model of the blade.  

Dynamic Analysis 
During the conceptual design we looked at different tools to be used for dynamic 
analysis.  The tools would have to allow sweep in the blade geometry and allow for twist 
under load.  Both Garrad Hassan’s Bladed and Stig Øye’s Flex5 programs were 
considered.  Under the advice of Craig Hansen at Windward Engineering, we decided to 
use the newly developed capabilities of FAST (Jonkman and Buhl Jr 2004) as a pre-
processor for MSC/ADAMS®.  These modifications were implemented by the National 
Renewable Energy Laboratory (NREL).  This analysis option was also the lowest cost 
with ADAMS under an academic license. 
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A diagram of the dynamic analysis process utilizing FAST with ADAMS is shown below 
in Figure 2.  Turbine system properties, such as airfoil section data, blade structural 
properties, generator efficiency, etc. are used to build input files for FAST and the 
aerodynamic subroutines of AeroDyn.  For the particular design load case to be studied, 
the NREL developed programs TurbSim (Kelley and Jonkman 2005) and IECwind 
(Laino 2005a) are used to develop the input wind fields.  FAST is then run to build the 
large ADAMS datasets.  ADAMS is then executed to perform the dynamic calculations.  
During operation, ADAMS calls the linked AeroDyn subroutines to compute the 
aerodynamic blade forces.  The output of the process is time series files of desired 
parameters. 

TurbSim/ Baseline IECWind Turbine 

System 
Properties 

Wind Field 

FAST AeroDyn ADAMS 
Datasets Input Files Input Files

FAST AeroDyn ADAMS 

Preprocessing 
Time 

Series Data 

Model 

 
Figure 2.  Analysis flow diagram. 

Prior to developing the dynamic model, an aerodynamic model was built using the 
NREL-developed WT_Perf program (Buhl Jr 2005).  Peak power coefficients, optimum 
pitch, and optimum tip-speed ratio where determined from this step.  The next step was to 
run a simplified model in YawDyn (Laino 2005b).  A stepped-wind input file was used to 
develop a power curve to compare to the WT_Perf results.  Because YawDyn also uses 
the AeroDyn subroutines, this process allowed checking of the input files that would be 
used for FAST/ADAMS. 
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After this initial checkout phase of the analysis process, ADAMS was run with fixed 
rotor speed and a uniform wind speed to study the quasi-static twisting behavior of the 
rotor.  A controller was then developed to run the IEC loads cases.  The baseline turbine 
used a standard variable-speed torque controller and with full-span pitch for rotor speed 
control.  The torque controller operated according the formula: 
 

2
gengen kQ ω=  (2) 

 
Where: 
Qgen = generator mechanical torque, N·m 
k = generator torque control constant, N·m/rpm2 
ωgen = generator rotational speed, rpm 
 
The generator torque control constant for peak power capture was determined by 
(Fingersh and Carlin 1998): 
 

  3

5

2 O

POCR
k

λ
ρπ

=  
(3) 

 
Where: 
ρ = atmospheric density, kg/m3 
R = rotor radius, m 
λO = optimum tip-speed ratio 
 
The torque controller was validated using the stepped wind input and comparing the 
torque/speed relationship to Eq. (2). 
 
For the pitch controller, the gains from an existing model for the WindPACT 1.5 MW 
were modified by scaling the gains based on the rotor inertia.  This WindPACT model 
came with the examples files in the FAST download from the NREL website (Jonkman 
2005).  To verify proper operation of the controller, 1 m/s stepped inputs were simulated 
at 11 m/s, 14 m/s and 20 m/s.  Overshoots in generator rpm and blade pitch were 
determined acceptable and no stability problems were observed in turbulent simulations.  
Further optimization of the controller was expected to be conducted in the future 
according to methods outlined by Hand (1999). 
 
During this modeling phase, we did not have tower or drivetrain characteristics for the Z-
50 turbine.  We therefore modeled with these degrees of freedom disabled.  The full-
system rotor modes, and coupled rotor/tower modes are therefore not included in this 
presentation. 
 
Full wind field turbulent simulations were to be performed for the IEC operating load 
cases.  Details of the turbulence model inputs are shown below in Table 1: 
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Table 1.  Turbulence Model Parameters 

Random Number Generator RANLUX 
Vertical grid point dimension 5 m 
Horizontal grid point dimension 5 m 
Time step 0.05 s 
Time series length 660 s  
Usable length of time series 630 
Hub height 61 m 
Grid Height 65 m 
Grid Width 65 m 
Vertical mean flow angle 8° 
Turbulence Spectrum Kaimal 
IEC turbulence class A 

 
The grid point dimensions resulted in a 13 × 13 grid.  We chose the dimensions based on 
previous experience with Germanischer Lloyd (GL) requirements; however NREL 
typically uses an 11 × 11 grid.  The time step was chosen to give a valid bandwidth of 10 
Hz, typical of measured data.  The time series length was chosen to allow for a 30-second 
transient at the beginning of the simulation.  The hub height was set at 61 meters because 
we were using a WindPACT 750 kW tower model.  The vertical mean flow angle was 
based on IEC requirements (IEC-TC88 2005, Section 6.3).  The Kaimal (1972) spectral 
model was used because it is one of the two IEC models (IEC-TC88 2005, Appendix B) 
available in TurbSim. 
 
According to the IEC requirements, six 10-minute simulations per wind speed have to be 
run for the entire operating range.  Due to time constraints, only two simulations per wind 
speed were run in the range of rated wind speed.  Based on previous atmospheric testing 
experience, we expected that the highest loads would occur in this range. 
 
Due to time constraints not all of the IEC extreme load cases were performed.  We 
therefore simulated cases that were expected to be driving load cases in deflection for the 
flap/twist coupling concept according to Wetzel (2005) and Griffin (2004).  The extreme 
loads were determined for the operating load cases, the extreme operating gust with 
direction change, and the extreme operating wind shear.  Inputs for these load cases can 
be found in the IEC design requirements (IEC-TC88 2005).  At the time of this writing, 
the extreme load cases for the 50-m rotor had not been performed. 
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RESULTS 
For the results we will look at three different models, called STAR6, BASE6, and 50-m.  
These models, respectively, are the swept 56-m diameter rotor with 2.2 m of tip sweep, 
the same 56-m diameter rotor with no sweep, and a baseline rotor that is used on the Z-50 
turbine.  The details of the 50-m rotor are proprietary, so only normalized load values 
will be presented for this model. 

Tip Twist 
We first look at the twist behavior of the STAR rotor.  Figure 3 below shows the tip twist 
versus 10-minute average wind speed.  The 10-minute simulations were run with IECA 
turbulence.  Two 10-minute simulations were run for each wind speed, each using a 
different random number generator seed.  Negative tip twist is towards feather.  At the 
top of the plot we observe twist of less than 1° for the straight rotors BASE6 and 50-m.  
The average tip twist for STAR6 reaches a minimum of -3° to -4° between 10 m/s and 11 
m/s.  The minimum values are approximately -5° for the full wind speed range.  
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Figure 3.  Tip twist for 10-minute turbulent simulations. 
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Root Flap Bending Moment 
The blade root flap bending moment for the same conditions in Figure 3 is presented 
below in Figure 4.  The moments are normalized to the maximum value obtained from 
the BASE6 simulation.  The top three sets of data are the maximum values of the 
simulations, obtained from BASE6, STAR6 and 50-m in order of value respectively.  The 
peak BASE6 value is approximately 20% higher than the peak STAR6 value, and 25% 
higher than the 50-m peak value.  The average values are also shown, again in order as 
the maximum values.  The peak average values for STAR6 and BASE6 occur between 10 
m/s and 11 m/s.  The peak average value for the 50-m model occurs between 11 m/s and 
12 m/s. 
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Figure 4.  Blade root flap bending moment. 

 

Larwood/Zuteck Windpower 2006  9 



At this point in the design phase, we wished to optimize the geometry of the sweep for 
maximum load reduction.  It was difficult to see improvements in plots such as Figure 4, 
so we plotted in Figure 5 the probability density of the flap bending moments for the 10 
m/s simulation.  The most right-hand side curve is for the BASE6.  The next two curves 
to the left are for a later version of the STAR rotor with two different sweep curve 
exponents.  The higher value represents more curvature outboard along the blade.  The 
50-m model was run at 11 m/s because we expected this to be the peak in flap loads for 
this model. 
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Figure 5.  Histogram of flap bending moment for 10-minute 10 m/s turbulent simulation. 
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To show the relationship between root flap moment and blade tip twist,  is 
presented below with time series data of tip twist, root flap, and blade pitch for a portion 
of a 10 m/s average simulation.  This particular time series is for a later design of the 
STAR rotor that included more torsional flexibility.  The tip twist is plotted positively for 
direct comparison to the root flap bending moment.  The twist quite closely follows the 
flap moment, and can be seen to slightly lag as shown in the peak just prior to 200 s.  
After this peak the turbine pitches to control rotor speed. 

Figure 6

Figure 6.  Time series of tip twist, flap bending, and blade pitch. 
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Deflection 
The tip deflection of the models is presented below in Figure 7.  The deflection values 
have been normalized to the available tower clearance.  The maximum values for the 
simulations are shown, in order of BASE6, STAR6 and 50-m.  The peak values for the 
STAR6 and the 50-m are roughly the same. 
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Figure 7.  Normalized blade tip deflection. 
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Power 
The 10-minute average generator power values are shown in Figure 8.  The curves are 
ordered in value by BASE6, STAR6, and 50-m rotor.  There is little variation between 
the values for BASE6 and STAR6, however there is a rough 100 kW difference between 
STAR6 and the 50-m power values below the rated wind speed for the simulated wind 
speeds. 
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Figure 8.  Power curves for the models. 
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Extreme loads 
The results for extreme-load tip deflection are shown below in Table 2.  The results are 
shown with and without safety factors included.  The straight blade BASE6 exceeds the 
tower clearance for all conditions with safety factors included.  For the STAR6, the 
deflection is at the limit with safety factors included for the extreme coherent gust with 
direction change. 
 

Table 2.  Extreme Load Blade Tip Deflections 

Load Case Model Normalized 
Tip Deflection 

With Safety 
Factor 

BASE6 0.81 1.20 Power Production 
STAR6 0.67 0.99 
BASE6 0.76 1.13 Extreme Coherent Gust 

with Direction Change STAR6 0.67 1.00 
BASE6 0.72 1.07 Extreme Wind Shear 
STAR6 0.61 0.92 

 

DISCUSSION 
The authors caution that the results presented are based on modeling and have not been 
validated with atmospheric testing results.  Atmospheric testing of the swept rotor is 
intended to begin in the winter of 2006-2007. 
 
The ADAMS models show that the STAR6 blade is twisting towards feather as expected.  
The peak average value falls between 10 m/s and 11 m/s (Figure 3).  This is the same 
wind speed range for the peak flap bending loads, and is typical of peak loads in the 
“knee” of the power curve ( ).  Twist is shown to be highly dynamic (Figure 6) 
and closely follows the flap bending loads.  No stability problems or erratic behavior are 
observed in the blade pitch control.  The peak twist is on the order of 5°, which is on the 
low end of the design range.  We have since designed the blade with more twist response. 

Figure 8

Figure 8

 
For flap bending (Figure 4), there is a substantial reduction in peak load with sweep. 
However, the STAR6 peak is slightly higher than the 50-m baseline.  Plotting of flap 
bending probability density functions ( ) can be used to determine optimum 
geometry for load reduction of the swept planform. 

Figure 5

 
It is interesting to note in the tip deflection results ( ) that even though the sweep 
concept requires the blade to deflect towards the tower to induce twist, the reduction in 
loads is such that the overall peak tip-deflection is of the same level as the baseline 
turbine. 

Figure 7

 
The power results in  are surprising because there seems to be little loss in power 
due to the combined effect of sweep and twist to feather compared to a straight blade 

Larwood/Zuteck Windpower 2006  14 



design.  The difference in below rated power between the STAR6 and the 50-m rotor 
suggests that the expected increase in annual energy capture will meet the design goals. 
 
For the STAR6, the worst case condition is the extreme coherent gust with direction 
change ( ), where the deflection is at the limit of tower clearance with safety 
factors included.  We note that upwind coning can be used to increase the tower 
clearance; however this is at the expense of increased flap bending loads. 

Table 2

 
As stated above, we have not included the drivetrain and tower degrees of freedom in the 
dynamic modeling.  Future work will be required to include these models by 
incorporating frequencies obtained from field test results.  The full system model will 
allow for any dynamic resonances to be uncovered.  We also intend to determine the 
flutter boundary of this concept, using methods developed by Lobitz (2004).  The 
increased torsional flexibility of the design increases the probability of flutter; however, 
aft tip-sweep should act to increase the flutter stability.  Also, no flutter behavior has 
been observed in the operating simulations.  We also need to complete the full suite of 
IEC loads cases to verify that we are within the load envelope of the Z-50 turbine. 
 
For future work, we also intend to enhance the capability of FAST to include the blade 
sweep geometry and twist degrees of freedom.  This has the potential to allow for 
automated design optimization and load case runs at minimal cost. 

CONCLUSIONS 
For the Knight & Carver LWST contract, a dynamic analysis of a swept-blade wind 
turbine rotor has been developed.  The rotor is intended to be tested on a Zond Z-50 750 
kW turbine, and the swept blade is expected to increase energy capture by 5% to 10% 
without increasing the load envelope.  The blade model, the STAR6, had 28 m in length 
and has 2.2 m of tip sweep.  NREL’s FAST code was used as a pre-processor for 
ADAMS simulations of the turbine.  A straight-bladed turbine model of the same 
geometry and a baseline 50-m diameter rotor were also modeled for comparison.  Key 
results of modeling effort were as follows: 
 

− Peak twist of the STAR6 was 5°, which was at the low end of the design range 
− The twist was highly dynamic and followed the flap bending loads 
− Peak flap bending for the STAR6 was reduced by 20% compared to the straight 

blade; however the loads were slightly higher than the 50-m baseline rotor. 
− Optimization of the sweep geometry for lowest loads was obtained by plotting 

the probability density of the flap bending loads. 
− Blade deflection of the STAR6 was on the same level as the 50-m baseline for 

operating simulations. 
− Peak extreme deflection for the STAR6 was obtained with the extreme coherent 

gust with direction change 
− Power capture for the STAR6 shows little detriment compared to the straight-

bladed rotor, and average capture is expected to be as much as 5% to 10% over 
the 50-m rotor. 
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Future modeling work will include tower and drivetrain modeling of the turbine, and we 
intend to add sweep geometry and twist degrees of freedom to the FAST code. 
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