10-6-2016

Emerging Trends in Infectious Disease

Jed Grant

University of the Pacific, jgrant@pacific.edu

Follow this and additional works at: https://scholarlycommons.pacific.edu/pa-facpres

Part of the Medicine and Health Sciences Commons

Recommended Citation

Grant, Jed, "Emerging Trends in Infectious Disease" (2016). Physician Assistant Program Faculty Presentations. 4.
https://scholarlycommons.pacific.edu/pa-facpres/4

This Conference Presentation is brought to you for free and open access by the Arthur A. Dugoni School of Dentistry at Scholarly Commons. It has been accepted for inclusion in Physician Assistant Program Faculty Presentations by an authorized administrator of Scholarly Commons. For more information, please contact mgibney@pacific.edu.
Objectives

- Describe emerging trends in infectious disease
- Recognize epidemiologic risk factors for emerging and resurgent infectious disease
- Develop a differential diagnosis that includes appropriate infectious disease

Unanticipated Epidemics since 1980

- Staphylococcus aureus toxic shock
- S. aureus USA 300
- AIDS
- West Nile virus
- Lyme disease
- Avian influenza
- Severe acute respiratory syndrome (SARS)
- Middle Eastern respiratory syndrome (MERS)
- Legionnaires' disease
- Measles
- Ebola
- Cryptosporidiosis
- H1N1 influenza ("swine flu")
- Iatrogenic fungal meningitis
- Clostridium difficile NAP1 strain
- Norovirus ("cruise-ship dysentery")
- Anthrax bioterrorism
Recent and Current Epidemics

World Wide
- Zika Virus
- Yellow Fever
- Ebola
- Dengue
- Chikungunya
- Enterovirus
- Influenza
- Middle Eastern Respiratory Syndrome

In the US and California
- Zika Virus
- West Nile Virus
- Meningitis
- Multi Drug Resistant Organisms
- Clostridium difficile Infections
- Community Acquired Pneumonia
- Influenza
- Vaccine Preventable Illness
 - Measles, others

Viral Hemorrhagic Fevers

- From one of 4 families
 - Flaviviridae (Dengue)
 - Bunyaviridae (Hanta)
 - Arenaviridae (Lassa)
 - Filoviridae (Ebola)

- All but Dengue may be spread by aerosol
- All cause increased vascular permeability and in severe cases systemic inflammatory response, shock, organ failure and death.
- Mortality ranges from 10% (Dengue) to 90% (Ebola)

Zika Virus

- An arbovirus (arthropod borne) in the genus Flaviviridae.
- Dengue, yellow fever, WNV, St. Louis encephalitis, Japanese encephalitis all in the same genus.
- ssRNA about 11k bases, 40 microns in size and is enveloped
- Enters host cell via membrane fusion, replicating in the cytoplasm and is shed via budding
- Humans are one of many hosts. Zika can reproduce in arthropods and vertebrates
- Vector is the Aedes mosquito, but is also sexually transmitted and crosses the placenta (in utero transmission)
Current Zika active transmission as of 8/2/16

US Zika cases as of 8/3/16

US range of *Aedes* mosquitoes
Zika vector: Aedes mosquitos

- **Aedes aegypti**
 - Tropical, sub-tropical and somewhat in temperate climates
 - Prefer to feed on humans, and will feed during the day
 - Aggressive: will follow you inside your house
 - Have developed localized resistance to several insecticides
- **Aedes albopictus**
 - Tropical and sub-tropical, but can live at a broader range of temperate climates than aegypti
 - Will feed on animals or humans
 - Aggressive, generally hang out around where humans live.
- Both like small sheltered containers to lay eggs
- Eggs are hearty and can withstand desiccation for one year, but perish at <10°C

Zika Signs and Symptoms

- Incubation period of 3-12 days, 80% of infections go unnoticed.
- Most are asymptomatic, but if symptomatic will be so for 2-7 days
 - Viremia is high in first week of illness and virus is shed for several days after resolution of symptoms.
- Rash, fever, and arthralgia are the main symptoms
 - Fine, diffuse maculopapular rash including palms and soles
 - Arthralgia predominates in small joints of hands and feet
 - Myalgias and HA may also occur
- Differential diagnosis is broad but should include other arboviruses common in area of travel
 - Dengue, chickungunya, etc

Zika Rash
Diagnostic Studies for Zika

- Lab
 - Reverse transcriptase polymerase chain reaction (RT-PCR) will become positive during the initial week.
 - After the 1st week anti-Zika IgM by ELISA will be positive but has cross-reactivity with other flaviviruses.
 - Individual flavivirus antibody can be tested by plaque reduction neutralization tests (PRNT).
 - CDC recommends urine or serum RT-PCR, if neg, then IgM with PRNT.
 - Urine samples remain positive for RT-PCR for at least two weeks longer than serum.

Complications and Treatment of Zika

- Really only a risk in pregnancy
 - Microcephaly incidence increased 20 fold in Brazil since outbreak
 - Also causes ophthalmologic abnormalities
- Guillain-Barre Syndrome (GBS) has been reported following Zika
- Current treatment consists of supportive therapy
 - Avid NSAIDS due to possible increased risk of bleeding (like Dengue)
 - IVig for severe GBS
- In those who are pregnant careful monitoring and evaluation of the fetus is indicated
 - Ultrasound for microcephaly or intracranial calcifications
 - Amniotic fluid testing for Zika

Prevention of Zika

- Control of vectors
 - DEET, mosquito nets, permethrin, long sleeves and pants
 - Reduce standing water, insecticide spraying.
 - Genetically modified mosquitoes: offspring are incapable of survival.
 - Chinese have infected mosquitoes with Wolbachia bacteria which causes infertility of female if from mating, or the offspring if female is infected from other means.
- Avoid intercourse or use condoms for 28 days after illness or travel
- Wait 8 weeks to attempt to conceive, men 6 months.
- Vaccine in development
 - One in Phase 1 trial, others developing

1. medscape.com/viewarticle/867009
2. medscape.com/viewarticle/866928
Chikungunya Virus (CV)

• Originally discovered in 1952 in Tanzania, Africa
• Name means “to be bent over” in Swahili. Known as “buka-buka” in the Congo, which means “broken-broken”, probably due to the debilitating arthralgias caused by the virus
• Arbovirus in the Togaviridae family, alpha virus genus (different family from Dengue and Zika)
 • Others in the same genus and family: WEE, EEE, Ross river virus
• ssRNA virus, about 11k bases, with envelope. Cell entry is under study

Chikungunya Virus (CV)

• Characterized by outbreaks and long periods of quiescence
• Outbreak in the Americas since June 2014
 • 2014 - 2811 cases in continental US and 4710 in territories
 • 12 locally transmitted cases in FL, almost all locally transmitted in territories
 • 2015 - 896 cases in continental US, and 237 in territories
 • 1 locally transmitted in TX, almost all locally transmitted in territories
 • 2016 - 59 cases in continental US, and 99 in territories
 • No locally transmitted cases in continental US, almost all locally transmitted in territories

Current or previous CV as of 4/22/2016

[Image source: CDC]
Chikungunya in the US as of 8/9/16

Image source: CDC

Range of Aedes mosquitoes US

Chikungunya Virus (CV)

- Major vector is *Aedes aegypti*, but CV mutated in 2006 to a form that could be transmitted by *Aedes albopictus*.
- Humans are the major reservoir during epidemics, but birds, primates, and rodents may also be in quiescent periods.
- Travel to endemic areas is the major risk factor, and likely cause for increased cases in US and Europe.
- Clinical illness occurs in 40-85% of infections.
- Clinical infection overlaps with Dengue and co-infection can occur.
- 3-7 day incubation period, not usually a prodrome.
Chikungunya Virus (CV) signs and symptoms

- Abrupt onset of high fevers (102-105°F) with shaking chills lasting 2-3 days
 - May defervesce for 4-10 days and then have a recurrence of fever for 1-2 days (saddle back fever)
- Pharyngitis, conjunctivitis and photophobia occur
- Severe arthralgias/myalgias and a rash are common
 - Arthralgias are more common in the small joints, and often involve more than 10 joint groups, incapacitating the patient
 - Patients typically lie still in a flexed posture, avoiding movement
 - Hips are usually spared, but the axial skeleton is usually involved
 - Most have a complete resolution in 1-2 weeks, but some 10% develop chronic debilitating joint pain lasting for years
- Patients typically lie still in a flexed posture, avoiding movement
- Hips are usually spared, but the axial skeleton is usually involved
- Most have a complete resolution in 1-2 weeks, but some 10% develop chronic debilitating joint pain lasting for years

Chikungunya Virus (CV) Rash

- Flushed appearance of face and trunk
- Diffuse erythematous maculopapular rash involving trunk and extremities, sometimes including palms and soles
 - Occasionally with pustulae, xerosis, hypermelanosis or desquamation
- Mortality is about 10%
 - More common in elderly, young and those with co-morbidities
 - CV, respiratory and neurologic co-morbidities predispose to severe infection
 - Not as neuroinvasive as other alpha viruses
- Neurologic disease is more common in neonates.
- Vertical transmission does occur

Chikungunya Virus (CV) Diagnostic Criteria

- Fever and arthralgias with history of travel to endemic area
- Dengue, Malaria, other tropical diseases excluded
- Lab
 - CV specific IgM, IgG via ELISA labs take 5-7 days to become positive
 - At 2-3 days viremia is high, culture may be positive if test available
 - CDC offers a reverse transcriptase polymerase chain reaction (RT-PCR) test
- Treatment
 - Generally supportive, NSADS, Caution with ASA (bleeding risk)
 - Anti-virals and steroids are not effective
Dengue

- Originated in primates but moved to humans
- Most common arbovirus in humans
 - Earliest outbreak was 1635 in west indies but similar illness recorded in China CE 265-420, associated with flying insects near water
 - 1780 outbreak in North America
 - Became much more common after WWII vector spread with cargo
 - Vector control very effective at limiting until 1970s, resurgent since 1980s.
- 50-100 million cases/year worldwide
 - 500k cases of dengue hemorrhagic fever (DHF) annually, 22k deaths
 - About 250 cases/year in US; FL 2010, TX 2005

- ssRNA virus about 11k bases, enveloped
- Enters primarily Langerhans cells and WBC via membrane fusion
- Reproduces in the cytoplasm of dendritic cells, hepatocytes, and endothelial cells and is shed by budding
- Four distinct serotypes
 - Full immunity derived to serotype after infection, partial immunity to other
 - Serotypes co-wild, infection with more than one, and infection of one after another is associated with more severe disease (i.e. DHF)
- Humans are the reservoir, though some primates can serve as hosts without developing disease. The virus can also replicate in the vector.
- Aedes mosquitoes are the vector, and are not affected by the virus.

- Viremic host must coexist with sufficient number of vectors for outbreak to occur
- Follows two patterns: epidemic, and hyperendemic (ongoing)
 - Incubation period 3-14 days, average is 4-7 days
 - Initial infection is asymptomatic 50-90%, or may present as a non-specific viral illness
 - Usually self-limited
Dengue Signs and Symptoms

- May be asymptomatic, particularly if child <15 yrs old
- Recovery usually within 7-10 days
- Dengue Fever
 - Reddish mottling of skin and facial flushing
 - Aching pain all over, mostly neck and back ("breakbone fever")
 - Fever begins day 3 of illness and persists 5-7 days
 - Leukopenia, lymphopenia and thrombocytopenia are common
 - High fever (106°F), may be "saddleback fever": 1-2 days of fever, defervescence for a day, then recurrence of fever.
- 33% of patients may have mild hemorrhagic symptoms
 - Petechiae, gingival bleeding, positive tourniquet test (>20 petechiae after BP cuff)
 - Rarely fatal
 - Treatment is symptomatic and supportive

Dengue Hemorrhagic Fever (DHF)

- Almost always occurs in those with prior exposure to Dengue
- Primarily occurs in children but can affect anyone
- Biphasic fever, when recurs will have septic shock and hemorrhagic sx
- Increasing HCT (from plasma leakage into tissues) and low albumin, atypical lymphocytes, transaminases elevated, thrombocytopenia
- GI bleed or other sites due to profound capillary fragility
- Acute and/or pleural effusions due to increased capillary permeability
- DIC and severe metabolic acidosis may occur
- Mortality
 - Treated 2-5%, untreated 50%

Dengue diagnostic studies

- CBC
- LFT
- PT/INR, PTT, DIC panel if available
- UA
- Quilac
- Dengue virus IgM/IgG titer with x4 increase
- PCR for viral RNA is available at reference laboratories
- Serial US for pleural effusions shows DHF before labs are pos.
Dengue Treatment

• Usually self limited
• Supportive
• Avoid NSAIDS and ASA due to bleeding risk
• Steroids are not beneficial
• DHF should be treated in ICU
 • Careful attention to fluid balance and hemorrhage

Ebola Virus

• Outbreak June 2014 – December 2015 in West Africa
 • Largest Ebola outbreak in history
 • 28,652 infected; 11,325 deaths
 • 4 cases in US: two imported, two locally acquired
• Discovered in 1976 in Congo, near the Ebola river
• Natural reservoir is unknown, likely bats and primates
 • Bats can have high viremia and not get sick, live virus present in stool
 • Infected animals killed for consumption (bush meat) may contain virus
 • Body fluids of infected persons are highly contagious

Ebola

• Filamentous form, enveloped, negative stranded RNA
• 5 species
 • 4 cause disease in humans, 1 in animals only
 • Dogs can be infected
• Relative sparing of children
• Can reproduce in all tissues
 • Predilection for liver, endothelium, and mononuclear phagocytes
 • Necrosis is seen in liver, spleen, lymph nodes, kidney, lung and gonads
• May inhibit adequate immune response
Ebola Clinical Course

- Primary exposure
 - Travel to endemic area, incubation period 3-8 days
- Secondary exposure
 - Human to human contact with infected patient, incubation period up to 21 days
- Sudden onset of
 - Fever/chills, HA, myalgias/arthralgias followed quickly by GI symptoms
 - Abdominal pain, N/V/D, odynophagia and dysphagia
 - Half of patients will have conjunctivitis, mucus membrane/GI bleeding, and hemorrhage from puncture sites
 - May have a maculopapular rash which desquamates in survivors
- Tachypnea is a poor prognostic indicator

Ebola Diagnostic Studies

- Virus can be detected in sweat and urine with one hour turnaround but is not widely available. Most will have a 24-48 hour turnaround.
- Antigen detection test by ELISA
- IgM and IgG will be positive if patient survives long enough to mount an immune response.
- Thrombocytopenia and neutropenia are common.
- Various markers of organ function will decline as organ failure occurs.
- No useful imaging tests

Ebola Treatment

- STRICT BARRIER PRECAUTIONS/ISOLATION
 - All body fluids contain high numbers of infectious virions
- Supportive
 - Replacement of coagulation factors
 - Fluids and nutrition
 - Survivors will continue to shed virions for several weeks or months after clinical recovery, which is slow
 - Sexual transmission occurs. Unknown how long virus remains in semen after clinical recovery.
- Vaccines under development
West Nile Virus (WNV)

- Arbovirus in the Flavivirus genus like Japanese encephalitis
- ssRNA with 11k bases, enveloped, enters cell by membrane fusion, reproduces in the cytoplasm and is shed by budding
- First discovered in 1937 in Uganda, first cases in us in 1999
- Several large outbreaks in the US. About ½ are neuroinvasive
 - Since 1999 41762 cases, 18810 neuroinvasive
 - 2012: 5674 cases and 256 deaths.
 - 22 cases this year in CA, one death as of 8/14/16.

WNV in US and CA

- Birds are the host and reservoir
 - Non-bird animals and humans are dead end hosts
 - Dead birds can’t transmit the disease but are a marker of virus presence
 - Not transmitted animal to person, or person to person
 - Vertical transmission vector to offspring
- Culex mosquitos are the main vector
 - Ardea: VHF
 - Anopheles: malaria
Culex mosquito

- Worldwide distribution
- Most common mosquito in US cities
- Can extend to far north of temperate zone
- Smaller than Aedes
- No stripes
- Generally dawn/dusk or night feeder

WNV Signs and Symptoms

- Incubation 2-14 days but can be longer, especially if immune compromised
- Acute systemic febrile illness (20%)
 - Headache, weakness, myalgia, or arthralgia
 - Gastrointestinal symptoms
 - Maculopapular rash
 - Complete recovery is the rule, sometimes with lingering fatigue

WNV Signs and Symptoms

- Neuroinvasive disease (~1%)
 - Much more common in persons >50 years old and immunocompromised
 - 10% mortality, mostly for encephalitis and paralysis
 - Meningitis: fever, HA, nuchal rigidity
 - Encephalitis: fever, altered mental status (AMS), seizures, focal neurologic deficits, or movement disorders
 - Acute flaccid paralysis:
 - Clinically identical to poliovirus-associated poliomyelitis
 - Can occur without fever or apparent viral prodrome
WNV Diagnostic Studies

- Serum or CSF IgM for WNV by ELISA, with PRNT to confirm
- Some cross reactivity with other Flavaviridae
- CBC
- Hyponatremia may be seen in encephalitis from SIADH
- CSF shows viral picture
 - Elevated protein, lymphocytes, normal glucose
- Brain MRI usually normal but will show damage to basal ganglia, thalamus, and brainstem in encephalitis or damage to the anterior spinal cord in paralysis

WNV Treatment

- Supportive and symptomatic
- Many drugs have been tested, but none proven effective
- Monitor for development of neuroinvasive disease
- PREVENTION
 - Limit outdoor activity dusk to dawn
 - Use repellent, wear long sleeves
 - Vector control

Meningococcus

- Neisseria meningitidis
 - Encapsulated aerobic gram neg diplococci
 - 13 serogroups, but 5 cause 99% of disease
 - Current outbreak among MSM in southern CA.
 - Natural habitat is human nasopharynx
 - ~10% of population is asymptomatic carrier, up to 60% in closed populations
 - Transmitted via droplet or directly via close contact
 - Disease occurs when new subtype is introduced and there is a break in the mucosa - viral URI, smoking
Meningococcus

- Incubation is 3-4 days (range 1-10 days)
- Most infections have mild symptoms or subclinical infection
- 10-20% of infections will become meningococccemic
 - Organism reproduces rapidly and systemic symptoms occur before meningitis by 24-48 hours
 - Endothelial necrosis, thrombosis, hemorrhage, DIC occur
 - Suppurative complications occur
- Meningitis has 10% mortality even if properly treated early
 - 40% mortality if meningococcal sepsis occurs with meningitis

Meningococcus workup and treatment

- Septic workup
 - CBC, CMP, Lactate, blood cultures, UA, CSF studies
 - CT or MRI of brain (elevated ICP common)
 - LP shows elevated opening pressure, WBCs, low glucose, elevated protein
 - CSF gram stain positive 70-90%
 - Rapid PCR for meningococcus is positive even if abx have been started
- Treatment
 - Antibiotics (ceftriaxone very effective, higher dose), fluids, admission
- Prognosis
 - 10-20% of those that recover will have some form of sequelae

Meningococcus Prevention

- Prevention
 - Vaccines available for usual virulent strains
 - A, B, C, W, Y
 - High risk groups
 - Prophylaxis for close contacts in outbreak
 - ciprofloxacin for adults
 - ceftriaxone for children
Meningococcal Disease in the US

![Graph showing incidence of meningococcal disease in the US, 1970-2013](image)

Multi-Drug Resistant Organisms

<table>
<thead>
<tr>
<th>Antibiotics in use for 70 years</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average time to use until resistance: 2-4 years</td>
</tr>
<tr>
<td>Inappropriate or incorrect use 50% of prescriptions</td>
</tr>
<tr>
<td>Viral, fungal organisms, partially treated.</td>
</tr>
<tr>
<td>Pressure to satisfy Rx</td>
</tr>
<tr>
<td>Use in animals has greatly contributed to resistance</td>
</tr>
<tr>
<td>CDC estimates 2.05 million illnesses and 23k deaths due to resistant organisms</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Urgent Category</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clostridium difficile</td>
</tr>
<tr>
<td>Carbapenem-Resistant Enterobacteriaceae (CRE)</td>
</tr>
<tr>
<td>Includes Klebsiella and E. coli</td>
</tr>
<tr>
<td>Same resistant to ESBL/IMP/NDM</td>
</tr>
<tr>
<td>Neisseria gonorrhoeae</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Serious Category</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acinetobacter</td>
</tr>
<tr>
<td>Campylobacter</td>
</tr>
<tr>
<td>Candida</td>
</tr>
<tr>
<td>Enterobacteriaceae (ESBL)</td>
</tr>
<tr>
<td>Enterococcus (VRE)</td>
</tr>
<tr>
<td>Pseudomonas</td>
</tr>
<tr>
<td>Salmonella (typhus/non-typhus)</td>
</tr>
<tr>
<td>Shigella</td>
</tr>
<tr>
<td>Staphylococcus aureus (MRSA)</td>
</tr>
<tr>
<td>Streptococcus pneumoniae</td>
</tr>
<tr>
<td>M. tuberculosis</td>
</tr>
</tbody>
</table>
What can we do?

- **Inpatient**
 - Know what types of drug-resistant infections are present in your facility and patients.
 - Request immediate alerts from lab.
 - Alert receiving facility when you transfer a patient with a drug-resistant infection.
 - Follow relevant guidelines and precautions.
 - Prescribe antibiotics wisely.
 - Remove temporary medical devices such as catheters and ventilators as soon as possible.

- **Outpatient**
 - Prescribe wisely.
 - Narrow spectrum.
 - Appropriate antibiotics.
 - Use cultures and evidence-based decisions to prescribe antibiotics.
 - Stand your ground.

What is the CDC doing?

- **Four core actions**
 1. Prevent infections: Less illness, less antibiotic use.
 3. Improving Antibiotic Prescribing and Stewardship: Proper use in animals and humans.
 4. Developing New Drugs and Diagnostic Tests: Costs about $2 billion to bring new drug to market. Resistance in 2-4 years. No ROI.

Vaccine Related Disease

- Many parents are reluctant to immunize because of misinformation and ignorance of diseases prevented by vaccination.
- Resist the urge to become frustrated.
 - Most research says that parents are talking to you about it because they trust your opinion.
- CDC website has great parent-focused resources about vaccine safety.
- Finally, new law allows schools to refuse to admit unvaccinated children.
 - Sacramento county: 145 kids sent home 1st day of school 2016.
CA Vaccine Preventable Diseases Report 2014

- H. influenzae: 40 cases, none type b
- Hepatitis A: 142 cases
- Hepatitis B: 108 cases
- Measles: 75 cases
- Meningococcus: 56 cases
- Mumps: 37 cases
- Pertussis: 11,213 cases
- Rubella: 2 cases
- Tetanus: 4 cases
- Varicella: 41 DEATHS

Most cases in SF bay area and greater LA area.

Summary

- Zika
- Chikungunya
- Dengue
- Ebola
- West Nile
- Meningitis
- Drug Resistant Organisms
- Vaccine Preventable Disease

Sources