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Abstract

Among Lagrange’s many achievements in number theory is a solution to the
problem posed and solved by Fermat of finding a right triangle whose legs sum to a
perfect square and whose hypotenuse is also a square. This article chronicles vari-
ous appearances of the problem, including multiple solutions by Euler, all of which
inadequately address completeness and minimality of solutions. Finally, we sum-
marize and translate Lagrange’s paper in which he solves the problem completely,
thus successfully proving the minimality of Fermat’s original solution.

In the work “Sur quelques problèmes de l’analyse de Diophante,” Joseph-Louis La-
grange (1736-1813) tackled a problem that Pierre de Fermat (1601-1665) formulated
over a hundred years prior and deemed intriguing enough to pose as a challenge to his
own contemporaries. Not surprisingly, Leonhard Euler (1707-1783) took up the chal-
lenge along with Lagrange, and while the former gave a partial answer to the question,
and even managed to make generalizations, it was the latter who ultimately explained
and supported what Fermat had claimed without proof. In this article we first present a
brief history of the problem and chronicle attempts to solve it, with a focus on how La-
grange’s work fits in with Euler’s endeavors. Then we present a synopsis of Lagrange’s
paper, pointing out the crucial technique that he employed. Finally, we end with a
complete, annotated translation of Lagrange’s work.

History of the Problem: From Fermat to Euler and Lagrange

The available evidence points to Fermat as the source of the problem. The problem in
question is to find a right triangle the sum of the legs of which is a square and whose
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hypotenuse is also a square; in other words, find two numbers whose sum is a square and
the sum of squares of which is a fourth power. Fermat seems to have communicated this
problem to several of his contemporaries including Jacques de Billy (1602-1679), Bernard
Frénicle de Bessy (1604-1674), Brulart de St. Martina, and Marin Mersenne (1588-1648).
It appears as one of three problems, included as a parting challenge, at the end of a letter
that Fermat wrote to St. Martin on May 31, 1643.b Three months later, in August 1643,
Fermat wrote Mersenne, alluding to the fact that Fermat had previously communicated
this problem to both Frénicle and St. Martin.c In this letter, Fermat provided his answer
to the problem, the lengths 4,565,486,027,761 and 1,061,652,293,520 for the two legs
and 4,687,298,610,289 for the hypotenuse, without explaining his method. The problem
also appears as one of Fermat’s observations in Claude Gaspar Bachet’s (1581-1638)
translation of Diophantus’ (c.200-c.284) Arithmetica, book VI, number 24 [1], where
he included the same triple of solutions mentioned in the letter to Mersenne and where
Fermat claimed (but did not prove) minimality. However, in the very same translation
of Arithmetica by Bachet, the problem and solution appear in an annex of de Billy’s
Doctrinae analyticae inventum novum [3], which according to the included description
is a collection of problems communicated to de Billy by Fermat in their correspondence.
In the Doctrinae de Billy outlined a solution that leads to the values mentioned above.

Over a century later, Lagrange’s work [10] emerged among several of Euler’s solu-
tions, the first of which appeared in Part II of Elements of Algebra, [E388]d published in
1770[4]. This problem and Euler’s algebraic solution of it conclude Chapter XIV. He did
not cite a reference for the problem. In 1771, Lagrange published his French translation
of Euler’s Algebra [E388a] [5] which also includes several of his own commentaries, and
is often referred to as Lagrange’s “Additions to Euler’s Algebra.” Euler’s next solution
appeared in Miscellanea Analytica [E560] presented in 1773, which contains a wide va-
riety of results [6].e Problem IV is this problem of Fermat’s, though Euler attributed
it to Leibnizf. The solution presented in E560 employs a Fermat-like reduction similar
to the approach Lagrange used later on. His solution even passes through the same
intermediate steps that Lagrange’s does, though Euler made no mention if his list of
answers was complete or contained a minimal solution.

A few years later, on March 20, 1777, Lagrange’s solution, which includes his proof
of minimality, was read at the Berlin Academy of Sciences, and was published in the
Academy Mémoires in 1779 [10]. It is this very article whose translation we provide as
part of this paper. In the following year, Euler revisited and generalized this problem in
three subsequent works. His De tribus pluribusve numeris inveniendis, quorum summa
sit quadratum, quadratorum vero summa biquadratum [E763] [7] was read to the St.
Petersburg Academy on May 18. Next, his Solutio problematis Fermatiani de duobus

aWe haven’t found reliable dates for Brulart de St. Martin.
bSee letter LVIII in the second volume of [12, p. 258].
cSee letter LIX in the second volume of [12, p. 260].
dSee Ch. XIV, Q. 17, §240.
eOne such result is a proof of Wilson’s Theorem.
fWe have not found evidence of this problem in Leibniz’ works.
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Year Author Work
1643 (writ.) Fermat Letters to correspondents

1670 (publ.) Fermat Observations in Arithmetica

1770 (publ.) Euler Algebra, ch. XIV (E388)

1771 (publ.) Lagrange Translation of Euler’s Algebra

1773 (pres.) Euler Miscellanea Analytica, prob. IV (E560)

1777 (pres.) Lagrange Sur quelques problèmes . . .

1778 (pres.) Euler De tribus pluribusve . . . (E763)

1778 (pres.) Euler Solutio problematis Fermatiani . . . (E769)

1778 (pres.) Euler De insigni promotione . . . (E772)

Table 1: Timeline of Solutions & Generalizations of the Problem

numeris, quorum summa sit quadratum, quadratorum vero summa biquadratum, ad
mentem illustris La Grange adornata [E769] [8] and De insigni promotione Analysis
Diophantaeae [E772] [9] were read on June 5 and June 12, respectively. The first two of
these three specifically mention Lagrange. In E763, Euler indicated only that the problem
was proposed by Fermat and studied by Lagrange. But in E769, Euler acknowledged
Lagrange’s critique and conceded that his own solutions in the Algebra were found
by “chance and roving efforts,” putting their completeness in question.g Euler then
indicated that the subsequent exposition would provide a satisfactory response. In the
paper, he described ways to find new values that would make a certain biquadratic (i.e.
fourth power) expression equal to the square of a rational number, starting from existing
values that have the same property, but did not actually address the completeness issue
directly. In E772, Euler only mentioned the problem of Fermat’s, and then proceeded to
generalize his process for using existing values that make a given biquadratic expression
into a perfect square to find new values that do the same. All three of these works from
1780 were published posthumously, in 1824, 1826, and 1830, respectively. All the works
mentioned above are summarized in Table 1.

Lagrange’s work was the culmination of his decade-long (1767-1777) study of Dio-
phantine problems. Bénédicte Buraux-Bourgeois, in her article on Lagrange’s Diophan-
tine period, characterizes Lagrange as playing a rôle charnière, a pivotal role leading to a
more attentive and rigorous approach to proving the existence of solutions [2]. Buraux-
Bourgeois provides a comprehensive survey of Lagrange’s Diophantine works, starting
with the existence of solutions for the Pell-Fermat equationh and its generalizations,
which Euler also studied with great success. Other notable works are Lagrange’s four-
square theorem as well as his examination of the quadratic form Bt2+Ctu+Du2. For
short synopses and commentary on these works, we refer the reader to [2]. No doubt
influenced by an extraordinary contemporary like Euler, Lagrange chose to close his Dio-

gThis wording comes from the translation of E769 by Jordan Bell, available in the Euler Archive.
hSolution d’un problème d’arithmétique, 1768.
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phantine period with this work on a problem posed by another great that is Fermat.
Indeed, the abrupt manner in which Lagrange ended his article, “mais en voilà assez sur
ce sujet” signaled the end of his explorations in Diophantine analysis as well.

Synopsis of Sur quelques problèmes de l’analyse de Diophante

In this paper, Lagrange discusses [1] and describes his admiration for Fermat’s famous
method of descent, which Fermat used in Observation XXVI of book VI to show that
the difference of two fourth powers is never a square. Lagrange goes on to discuss how
Euler took advantage of the method of descent in Chapter XIII of [4] to prove many
similar results regarding certain polynomial equations that have no integer solutions.

But the difference of twice a fourth power and a fourth power can be a square,
i.e. 2x4 − y4 = z2 has solutions in the positive integers. Lagrange gives the trivial
x = y = z = 1 solution as well as x = 13, y = 1, [z = 239] and x = 2,165,017, y =
2,372,159, [z = 3,503,833,734,241]. Here, Lagrange points out that Euler’s solution
methods were not systematic and thus it was not clear that all solutions would be
found, nor that the simplest solutions would be found.

At this point, Lagrange introduces the main problem on which the article will focus:
to find a right triangle of which the hypotenuse will be a square and the sum of the two
sides around the right angle will be a square also, that is to find two numbers of which
the sum is a square and of which the sum of the squares is a fourth power. He cites
Fermat’s Observation XXIV of book VI in [1] and then connects the Fermat problem
to his. Fermat was looking for right triangle legs p and q so that p + q = y2, and
p2 + q2 = x4. But then

2x4 − y4 = 2(p2 + q2)− (p+ q)2 = p2 − 2pq + q2 = (p− q)2 = z2.

This means that any (p, q) solving the Fermat problem will lead to (x, y, z) solving
Lagrange’s problem, and vice versa. Indeed, since z = p− q, we have

p =
y2 + z

2
and q =

y2 − z
2

.

Lagrange then lists what he has found so far:

x y z p q

1 1 1 1 0
13 1 239 120 −119

2,165,017 2,372,159 3,503,833,734,241 1,061,652,293,520 4,565,486,027,761

Of these solutions, only the last solution is allowable because then the legs p and
q are positive integers. Indeed, Lagrange points out that Fermat claims these numbers
to be the smallest, but does not provide a demonstration. Hence he concludes that the
problem has not been resolved.
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Lagrange goes on to explain that perhaps Fermat’s method of descent can be used
to prove that he has found the smallest positive integer solution.

[I]f we can prove that when there are any integer values of x and y that
satisfy the equation 2x4 − y4 = 2, then there are necessarily two other
smaller values which also satisfy the equation, and when at the same time
we have a general method for deducing the larger values from the smaller
ones, it is clear that by starting with the smallest possible values of x and
y, we could find, by successively reascending, all the other satisfying values
in order of their magnitude.

After detailed algebraic manipulations and explanations, Lagrange concludes that a
solution to the original 2x4−y4 = z2 leads to a solution of s4+8t4 = u2 via a reversible
process, and with s and t each less than the greater of x and y. He then points out
that since the form of this equation is different than the original, we must continue our
analysis. Using similar algebraic manipulations, and after much work, he concludes that
the solution of the equation

s4 + 8t4 = u2

can be reduced to the solution of one of the equations

2q4 − r4 = s2, or q4 − 2r4 = s2.

Here, q and r satisfy qr = t. Moreover, the greater of q and r is less than the greater
of s and t. See §7 for more details.

Notice the first of these new equations is exactly like the one we started with (2x4−
y4 = 2). So Lagrange analyzes the second equation above, and ultimately finds that it
leads to an equation of the form n4 + 8p4 = 2 (using a different n and p than before),
and that n and p are each less than q and r. Thus he has finalized the descent pattern
by closing the loop. He also has the ability to work from the smaller solutions back up
the chain, which he does. Starting from small positive solutions, Lagrange ultimately
returns to the Fermat problem and lists the solutions in order.

x = 1, 13, 1 525, 2 165 017, . . . ,
y = 1, 1, 1 343, 2 372 159, . . . ,
z = 1, 239, 2 750 257, 3 503 833 734 241, . . . ,

and thus the corresponding legs of the desired right triangle would be

p = 1, 120, 2 276 953, 1 061 652 293 520, . . . ,
q = 0, −119, −473 304, 4 565 486 027 761, . . . .

Lagrange has thus shown that these are the smallest positive integer solutions to the
problem, therefore verifying the assertion of Fermat.

Lagrange then considers equations of the form x4 + ay4 = 2 for general a. If a
solution exists, then he can always reduce this equation to one in a similar form with
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smaller values. Lagrange rejects this as a general approach however, because certain
choices he made were a possibility but not a necessity, and so he may not obtain all
solutions this way. He then refers the reader to the last chapter of his Additions to
Euler’s Algebra [5] for a simpler and more general approach.

The paper concludes with remarks about solutions of a two-variable polynomial
equation of degree higher than two. He builds new solutions from a known solution. His
method is reminiscent of perturbations, and he applies it to cubic polynomials in two
variables as well as a fourth degree polynomial provided that y3 and y4 do not appear
and there are no terms xy2 or x2y2. He ends abruptly.

Translation of “Sur quelques problèmes de l’analyse de Dio-
phante”

On some problems in the analysis of Diophantus i

1. Among the great number of beautiful Theorems of Arithmetic that Fermat left us
in his Observations on Diophantus, one of the more remarkable is one which is articulated
in the Observation on Question XXVI of Book VI,j because it is the only one for which
Fermat has given a proof.

The Theorem is that the difference of two biquadratic numbers cannot be a square;
and Fermat’s proof consists in showing that, if there were two biquadratic integers whose
difference was a square, we could always find two lesser integers that have the same
property, and so on, in such a way that one arrives necessarily at small biquadratic
numbers whose difference would be a square. But this is impossible, as we can assure
ourselves by examining the first few natural numbers. As the Theorem is thus proven
for whole numbers, it is clear that this is so for the rational numbers as well, since if the
difference of the biquadrates of two rational numbers is a square, and we put the two
numbers to a common denominator, it follows that the difference of the biquadrates of
the numerators will likewise be a square.

The principle of Fermat’s proof is one of the most fruitful in all of the Theory
of numbers, and especially for whole numbers; Mr. Euler has further developed this
principle, and has applied it to prove other analogous Theorems, to wit: that the sum
of two biquadrates cannot be a square; that neither the sum nor the difference of a
biquadrate and the quadruple of another biquadrate can be squares; that the double
of the sum or the difference of two biquadrates can never be a square; and finally that

iTranslated from the French by Jesse Herche and Christopher Goff, Department of Mathematics,
University of the Pacific, Stockton, CA, and Michael P. Saclolo, St. Edwards University, Austin, TX. We
have followed the formatting of the version appearing in the Complete Works of Lagrange [11] rather
than the original version [10] to enhance readability.

jSee [1].
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the sum of a biquadrate and the double of another biquadrate also cannot be a square.
(See Chapter XIII of the second part of his Elements of Algebra.k)

2. But if the sum of a biquadrate and the double of another biquadrate cannot be a
square, the same cannot be said for their difference; for it is apparent that the equality

2x4 − y4 = 2

is satisfied by taking x = 1, y = 1; and as for the equality

x4 − 2y4 = 2,

one need only take x = 3, y = 2.
We have found also for the first equation the other values

x = 13, y = 1, and x = 2165017, y = 2372159,

and for the second these herel:

x = 113, y = 84, and x = 57123, y = 2614.

We could again find many others by the known method for these sorts of equations,
according to which we can deduce new solutions from those that we already have, each
solution providing yet another different one, if the Problem admits several (see the
Treatise entitled Doctrinae analyticae inventum novum in the edition of Diophantus of
1670m, and Chapters VIII, IX, and X of the second Part of the Algebra of Mr. Eulern).
But this method, the only one available to us for equations above the second degree, is
merely specific and could never give all possible solutions. We even noticed that, often,
the solutions it produces are quite evidently not the simplest. Thus, if it were a matter
of solving the two equations above completely, or at least finding all the possible values
of x and y that do not exceed given bounds, the method in question would be of almost
no use, since we would always be uncertain if the values found through this method are
the only ones that answer the question, and we could only remove this doubt by trying
successively all integers for x and y.

3. The equation
2x4 − y4 = 2

is especially remarkable, because it contains the solution to a Problem proposed by
Fermat as very difficult, in the second Observation on the Question XXIV of Book VI

kSee [4].
lThe second value of y is incorrect. It should be 6214, as found in §9.

mSee [3] in [1].
nSee [4].
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of Diophantus.o The Problem entails finding a right triangle for which the hypotenuse
is a square and for which the sum of the two sides around the right angle is also square,
in other words to find two numbers whose sum is a square and whose sum of squares is
a biquadrate.

Let p and q be the two desired numbers, so that

p+ q = y2, p2 + q2 = x4;

removing from the double of the latter equations the square of the former, we have

p2 − 2pq + q2 = 2x4 − y4;

thus setting
p− q = z,

we obtain the equation
2x4 − y4 = z2,

on whose solution, therefore, the solution to the proposed Problem depends: for having
found the values of x, y, z, we immediately obtain

p =
y2 + z

2
, q =

y2 − z
2

.

If we take for x and y the values given above, we shall obtainp

1◦ x = 1, y = 1, whence z = 1, thus p = 1, q = 0;

2◦ x = 13, y = 1, whence z = 239, thus p = 120, q = −119;
3◦ x = 2165 017, y = 2372 159, whence z = 1560 590 745 759,

thus p = 1061 652 293 520, q = 4565 486 027 761.

4. Of these three solutions, we see that only the last is admissible when we require
that the desired numbers p and q be positive integers. But at the same time we see that
the values of p and q are extremely large, and it is natural to believe that we could satisfy
the equation with smaller numbers had Fermat not positively assured to the contrary in
the place cited above. However, as this assertion has not been proved there, and it does
not even seem to me provable by the method Fermat indicates, which is none other
than that about which we have spoken above, we can view as not resolved the problem
of finding the smallest positive integers that satisfy the double condition that their sum
is a square, and that the sum of their squares is a biquadrate. But how might we begin
to achieve a complete solution for this Problem and for analogous Problems? It seems

oSee [1].
pThe value for z in the third solution is incorrect. It has been corrected to 3 503 833 734 241 in the

synopsis. Also, the values of p and q in the third solution have been interchanged. Since p and q are
essentially interchangeable in the problem, these were not corrected in the synopsis.
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to me that we could only attain this goal by a device similar to that which has served
to prove the Theorems that we mentioned at the beginning of this Memoir: for if we
can prove that when there are any integer values of x and y that satisfy the equation

2x4 − y4 = 2,

then there are necessarily two other smaller values which also satisfy the equation, and
when at the same time we have a general method for deducing the larger values from
the smaller ones, it is clear that by starting with the smallest possible values of x and
y, which are x = 1 and y = 1, we could find, by successively reascending, all the
other satisfying values in order of their magnitude. All the difficulty therefore consists
in reducing the solution of the equation

2x4 − y4 = 2

to that of another similar equation, but in which the numbers x and y are necessarily
smaller than in the first. This is the purpose of the following analysis, which seems to
me the simplest and most direct that we can use in this investigation.

5. Therefore let us consider the indeterminate equation

2x4 − y4 = z2,

and let us suppose that we know some integer values of x, y, z that satisfy it. I first
note that we can assume x and y are relatively prime; for if they had a common factor,
z would be divisible by the square of this common factor, and, once the division is done,
the quotients would likewise satisfy the equation.

Moreover I remark that the numbers x, y, z ought to be all odd; because if y were
even, then z2 would be divisible by 2, and so z would also be even also. Thus as y4 and
z2 would be both divisible by 4, then 2x2 would be as well, so that x4 would be divisible
by 2. Thus x would be even and would not be relatively prime to y, contrary to the
hypothesis. Now as y is odd, z will also necessarily be odd. Finally, as we know that
the square of every odd number is necessarily of the form 8m+1, it follows that z2+y4

will be of the form 8n+ 2. Thus 2x2 would be of the same form and consequently x4

would be of the form 4n+ 1, so that x will also be odd.
That said, the equation

2x4 − y4 = z2

gives
4x4 = 2(z2 + y4) = (z + y2)2 + (z − y2)2,

whence

(z + y2)2 = (2x2)2 − (z − y2)2 = (2x2 + z − y2)(2x2 − z + y2).
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These two factors are both even, since y and z are odd; thus let their common factor
= 2m, so that

2x2 + z − y2 = 2mp, 2x2 − z + y2 = 2mq,

with p and q relatively prime. Then

(z + y2)2 = 4m2pq;

thus the number pq is necessarily a square, and as p and q are relatively prime, both
must be squares. Thus putting p2 and q2 in place of p and q, we have the equations

2x2 + z − y2 = 2mp2, 2x2 − z + y2 = 2mq2, (z + y2)2 = 4m2p2q2,

whence
z + y2 = 2mpq.

Equivalently,
z = 2mpq − y2,

and substituting this value of z into the other two equations, we obtain the following

x2 − y2 = mp(p− q), x2 + y2 = mq(p+ q).

From here we see that as m divides the sum and difference of x2 and y2, it must also
divide both 2x2 and 2y2; but as x and y are relatively prime (hypothesis), m can only
be 1 or 2. If m = 1, we have

x2 − y2 = p(p− q), x2 + y2 = q(p+ q);

if m = 2, we have

x2 − y2 = 2p(p− q), x2 + y2 = 2q(p+ q),

and if, for the latter case, we set

p+ q = q′, q − p = p′,

then we have
x2 − y2 = p′(p′ − q′), x2 + y2 = q′(p′ + q′).

Thus, whether m is 1 or 2, we shall have two equations of the form

x2 − y2 = p(p− q), x2 + y2 = q(p+ q).

First, I consider the former of these equations, and put it in the form

x+ y

p
=
p− q
x− y

;
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I note now that x + y is an even number, since x and y are both odd, and that p is
necessarily odd; for if it were even, then by the second equation q would also be even,
so that q(q+p) becomes an even number; but then this number would be evenly evenq,
and consequently could not be equal to the sum of two odd squares. Therefore, if we

reduce the fraction
x+ y

p
to its lowest terms, it will be of the form

2m

n
, n being odd

and relatively prime to m. Hence we have

x+ y = 2ms, p = ns and p− q = 2mt, x− y = nt,

for some integers s and t; and as x− y is necessarily even, and n odd, t must even, so
that by putting 2t in place of t, we have

p− q = 4mt, x− y = 2nt,

t being any number that is relatively prime to s, for otherwise x and y would not be
relatively prime. From this we obtainr

x = ms+ nt, y = ms− nt, p = ns, q = ns− 4mt,

values that satisfy the first equation. But they must also satisfy the second equation

x2 + y2 = q(p+ q);

thus by substituting them there, we have

m2s2 + n2t2 = (ns− 4mt)(ns− 2mt),

and expanding,
m2(s2 − 8t2) + 6mnst+ n2(t2 − s2) = 0,

an equation, which multiplied by s2 − 8t2 can be put in this form

[m(s2 − 8t2) + 3nst]2 = n2[9s2t2 − (t2 − s2)(s2 − 8t2)],

which, dividing by n2 and manipulating the terms, becomes

s4 + 8t4 =

[
3st+

m(s2 − 8t2)

n

]2
.

Therefore, if we set

3st+
m(s2 − 8t2)

n
= u,

q“Evenly even” means divisible by 4. “Oddly even” means congruent to 2 mod 4.
rIt is worth noting here, as Lagrange does in §8, that one can replace x with −x or y with −y if

needed in order to obtain positive solutions.
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which gives
m

n
=

u− 3st

s2 − 8t2
,

we obtain the equation
s4 + 8t4 = u2.

Thus the solution to the proposed equation

2x4 − y4 = z2

is reduced to that of the equation

s4 + 8t4 = u2;

and we see by the preceding analysis that, if there are integers that satisfy the first
equation, then there will also necessarily be integers that satisfy the second; and vice
versa, if we know one integer solution of the latter, we could deduce a solution of the
former by means of the formulas

m

n
=

u− 3st

s2 − 8t2
, x = ms+ nt, y = ms− nt.

As
m

n
is assumed to be a fraction reduced to its lowest terms, if u − 3st and s2 − 8t2

are relatively prime, we have

m = u− 3st, n = s2 − 8t2;

but if the numbers have a common factor, we shall take

m =
u− 3st

l
, n =

s2 − 8t2

l
.

And since we can take the numbers s, t, u indiscriminately, together with positive and
negative x, y, z, it is easy to see that each solution to the equation

s4 + 8t4 = u2

will always give two solutions for the equation

2x4 − y4 = z2,

by taking in the expression for m the number u to be positive or negative. I now note
that n can never be zeros, and that m can only be zero when u = 3st, which gives

s4 + 8t4 = 9s2t2,

sWe know n cannot be zero because s2 − 8t2 = 0 has no nonzero integer solutions.
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whence

s

t
=

√
9

2
±
√

81

4
− 8 =

√
9

2
± 7

2
= 1 or =

√
8;

as the value
√
8 is not admissible due to of its irrationality, leaving

s

t
= 1, and conse-

quently
s = 1, t = 1.

These values indeed satisfy the equation

s4 + 8t4 = u2;

but then we will have
x = n, y = −n,

and as x and y must be relatively prime (hypothesis), we will have x = 1 and y = 1.
Whence we see that when x and y are relatively prime and different from unity, then s
and t will also be relatively prime and different from unity, and m will never be zero; so
that the greater of the numbers x and y will necessarily be greater than both the two
numbers s and t. Consequently, if the equation

2x4 − y4 = 2

is solvable by some integers different from unity, the equation

s4 + 8t4 = 2

will necessarily be solvable in smaller numbers, also different from unity, and vice versa.

6. If the equation that we obtained,

s4 + 8t4 = u2,

were of the same form as the proposed equation, the Problem would be solved; but
since it is not, we must thus continue our analysis by operating henceforth on this latter
equation, where s and t are assumed to be relatively prime.

First, I am going to prove that s and u must be odd; because if s were even, s4

would be divisible by 16; thus u2 would be by 8; thus u would be by 4; thus u2 would
also be divisible by 16, and 8t4 would also be; thus t4 would be divisible by 2; thus
t would be even, and by consequence would not be relatively prime to s, contrary to
hypothesis. As s is odd, it is apparent that u must be odd as well. Now I put the
equation under examination in the form

8t4 = u2 − s4 = (u+ s2)(u− s2).
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Since u and s are both odd, the two factors

u+ s2 and u− s2

are even; thus their common factor will be 2µ, so that

u+ s2 = 2µ$, u− s2 = 2µρ,

with $ and ρ relatively prime. Thus

8t4 = 4µ2$ρ and 2t4 = µ2$ρ,

so that µ must divide t2. But eliminating u from the two preceding equations leads to

s2 = µ($ − ρ),

whence one sees that µ also divides s2. Therefore since t and s are relatively prime
(hypothesis), it must be that µ = 1. Thus we shall have

2t4 = $ρ;

and as $ and ρ are relatively prime, it must be the case that either

$ = 2q4, ρ = r4,

or
$ = q4, ρ = 2r4;

whence
t = qr.

In the first case, we have

u = 2q4 + r4, s2 = 2q4 − r4,

and in the second we have

u = q4 + 2r4, s2 = q4 − 2r4.

Whence we see that the solution of the equation

s4 + 8t4 = u2

is reduced to that of one or the other of the equations

2q4 − r4 = s2, or q4 − 2r4 = s2.
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Indeed, if we know some integer values of q, r, s that satisfy one or the other of these
equations, then we only need to take set t = qr to obtain the values of s and t that
solve the equation

s4 + 8t4 = 2.

I note:
1◦ That if s and t are relatively prime, s will also be relatively prime to q and to r;

thus q and r will be relatively prime by virtue of the equations

2q4 − r4 = s2 or q4 − 2r4 = s2;

2◦ That if q and r are different from unity, t will be bigger than q and r; if q is
equal to unity, then t = r; but in this case

2− r4 = s2 or 1− 2r4 = s2.

The second of these equations cannot be satisfied by integers, and the first only by

r = 1 and s = 1;

and so we have
s = 1, t = 1.

If r is equal to unity, then

t = q, and s2 = 2q4 − 1 or = q4 − 2;

whence one sees that s will be greater than q. I conclude from this that while s and t,
in the equation

s4 + 8t4 = 2,

are relatively prime and different from unity, q and r will also be relatively prime and
different from unity, and further that the greater of the numbers s and t will necessarily
exceed the greater of the two between q and r.

7. The equation
2q4 − r4 = s2

is, as we see, similar to the first

2x4 − y4 = z2;

thus the Problem will be solved, if we had found solely this equation; but, as we have
also arrived at the equation

q4 − 2r4 = s2,

which is different from the two that we just considered, we must again follow the
calculation relative to the latter.
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We have already seen that q and r must be relatively prime. Now q must be odd,
otherwise s would be even, consequently 2r4 would be divisible by 4, and r4 by 2. Thus
r and q would be both even and consequently would not be relatively prime. Thus as q
is odd, it is apparent that s will be also. Therefore, if we put the equation in this form

2r4 = q4 − s2 = (q2 + s)(q2 − s),

the two factors q2 + s and q2 − s will both be even, and consequently of the form
2mλ, 2mµ, with 2m their greatest common factor, and λ, µ two relatively prime num-
bers. Hence we shall have

q2 + s = 2mλ, q2 − s = 2mµ, 2r4 = 4m2λµ,

or rather
r4 = 2m2λµ,

so that m divides r2, but it also divides q2, because

q2 = m(λ+ µ);

therefore since q and r are relatively prime, it must be that m = 1. Therefore

r4 = 2λµ;

and so, r will be even; thus making

r = 2h,

results in
8h4 = λµ.

Therefore as λ and µ are relatively prime, we shall have necessarily either

λ = 8n4, µ = p4, or λ = n4, µ = 8p4;

whence
h = pn, r = 2pn.

Hence
s = λ− µ = 8n4 − p4 or = n4 − 8p4,

and
q2 = λ+ µ = 8n4 + p4 or = n4 + 8p4,

where we see that the two values of s and q2 return to the same form by replacing n
by p and s by −s. Therefore the solution of the equation

q4 − 2r4 = s2
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reduces itself to that of the equation

q2 = n4 + 8p4,

by taking
r = 2pn, and s = n4 − 8p4.

And we note that n and p must be relatively prime, otherwise r and q would not be,
contrary to hypothesis. Moreover, it is apparent that r will always be bigger than p and
than n, and as q is necessarily greater than r, it follows that, in the equation

n4 + 8p4 = 2,

the numbers n, p will necessarily be smaller than the numbers q, r in the equation

q4 − 2r4 = 2.

Now, the equation
n4 + 8p4 = 2

is of the same form as that which we have already examined above. Therefore the
Problem is solved.

8. Therefore, by the preceding method and formulas, we can solve not only the
equations of the form

2x4 − y4 = 2,

but also those of these two other forms

x4 + 8y4 = 2 and x4 − 2y4 = 2,

and with all the generality to which these equations are susceptible; because by beginning
with the simplest solutions and passing successively to ones that are more compound, we
will be assured to find in order all of the possible integer solutions of these equations, and
consequently also all fractional, according the remark at the beginning of this Memoir.
Thus, the calculation reduces to the following:

1◦ With the equation

(A) s4 + 8t4 = u2,

we shall have the equation

(B) x4 − 2y4 = z2,

by taking
x = u, y = 2st,
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and the equation

(C) 2x4 − y4 = z2,

by taking

m =
±u− 3st

l
, n =

s2 − 8t2

l
, ±x = ms+ nt, ±y = ms− nt,

l being the greatest common divisor.
2◦ With either of equations (B), (C), we shall have equation (A) by taking

s = z, t = xy.

9. Equation (A) gives readily at first

s = 1, t = 1, u = 3;

thus one has for equation (B)

x = 3, y = 2, and from this z = 7;

and for equation (C)

m =
±3− 3

l
, n = −7

l
, ±x = m+ n, ±y = m− n;

thus
m = 0, n = −1, l = 7 and x = 1, y = 1, z = 1,

or else
m = −6, n = −7, l = 1 and x = 13, y = 1, z = 239.

These values of x, y, z will give others for s, t, u for equation (A). At first

x = 1, y = 1, z = 1

will give
s = 1, t = 1, u = 3;

then
x = 3, y = 2, z = 7

will give
s = 7, t = 6, u = 113.

Finally
x = 13, y = 1, z = 239
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will give
s = 239, t = 13, u = 57 123.

The first of these three solutions to equation (A) is the same that we have adopted at
the outset, and we can now disregard them; the two others give therefore new solutions
for equations (B) and (C). Therefore first taking

s = 7, t = 6, u = 113,

we shall have for equation (B)

x = 113, y = 84, z = 7967;

then for equation (C)

m =
±113− 126

l
, n = −239

l
, ±x = 7m+ 6n, ±y = 7m− 6n.

Therefore: either

m = −13, n = −239, l = 1, x = 1525, y = 1343, z = 2750 257;

or
m = −1, n = −1, l = 239, x = 13, y = 1;

this latter solution has already been found above. Next, taking

s = 239, t = 13, u = 57 123,

we shall have for equation (B)

x = 57 123, y = 6214, z = 3262 580 153;

and for equation (C) we shall have

m =
±57 123− 9 321

l
, n =

55 769

l
, ±x = 239m+ 13n, ±y = 239m− 13n.

Therefore, either
m = 6, n = 7, l = 7967,

and from this
x = 1525, y = 1343, z = 2750 257,

and this is the solution found above; or

m = −9 492, n = 7967, l = 7;

thus
x = 2165 017, y = 2372 159, and from this z = 1560 590 745 759.
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And so on.

10. We see by this calculation, and it would be easy to press further if it is worth
the trouble, that the values that satisfy the equation

s4 + 8t4 = u2

are in order
s = 1, 7, 239, . . . ,
t = 1, 6, 13, . . . ,
u = 3, 113, 57 123, . . . ;

that the values that satisfy the equation

x4 − 2y4 = z2

are
x = 3, 113, 57 123, . . . ,
y = 2, 84, 6 214, . . . ,
z = 7, 7 967, 3 262 580 153, . . . ;

and finally the values that satisfy the equation

2x4 − y4 = z2

aret

x = 1, 13, 1 525, 2 165 017, . . . ,
y = 1, 1, 1 343, 2 372 159, . . . ,
z = 1, 239, 2 750 257, 1 560 590 745 759, . . . ,

and we can be assured that no numbers smaller than these here can satisfy the proposed
formulas.

Now if we deduce from the latter values of x, y, z, those of p and q (N◦. 3), we shall
have, in order, all the numbers which can solve the Problem of Fermat, to wit

p = 1, 120, 2 276 953, 1 061 652 293 520, . . . ,
q = 0, −119, −473 304, 4 565 486 027 761, . . . .

However great these latter numbers may be, they are nevertheless the smallest
positive integers that solve the Problem in question, proving Fermat’s assertion.

11. In general, we can make the solution of every equation of the form

x4 + ay4 = z2

tNote that the incorrect final value of z is included again here. It has been corrected to
3 503 833 734 241 in the synopsis. Similarly, the corresponding values assigned to p and q are still
interchanged.
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(for a given number a) depend on that of an equation of the same form in which the
numbers x, y, z are smaller.

To do so, we need only suppose

z = m2 + an2,

which gives
z2 = (m2 − an2)2 + a(2mn)2;

thus
x2 = m2 − an2 and y2 = 2mn.

Now let
x = p2 − aq2,

whence
x2 = (p2 + aq2)2 − a(2pq)2;

thus
m = p2 + aq2, n = 2pq;

and, substituting into the equation y = 2mn, we will have

y2 = 4pq(p2 + aq2).

To satisfy this equation let us set

p = s2, q = t2 p2 + aq2 = u2

so that
y = 2stu,

and then comes the equation
s4 + at4 = u2,

which is similar to the equation in consideration. If this last equation can be solved, we
shall obtain

x = s4 − at4, y = 2stu, z = (s4 + at4)2 + a(2s2t2)2,

or
z = u4 + 4as4t4;

from which we see that y will always be necessarily greater than each of the numbers
s, t, u.

Therefore knowing one integer solution of any equation of the form

x4 + ay4 = z2,
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we could derive from these formulas a new solution with larger values, and so on. But
we are not assured to find all possible integer solutions through this approach, for the
assumptions that we made that take

x4 + ay4 = z2

to the equation
s4 + at4 = u2

are merely possible but not absolutely necessary.
Furthermore the simplest and most general method to solve these types of equations

is perhaps that of factors, which I have explained in the last Chapter of Additions to the
Algebra of M. Euler, to which I refer.u

12. I am going to conclude this Memoir by showing how we can simplify and
generalize in some respects the ordinary method for equations beyond the second degree,
according to which, from a known solution, we can find several others.

Given the general equation of the third degree in two indeterminates x, y

a+ bx+ cy + dx2 + exy + fy2 + gx3 + hx2y + kxy2 + ly3 = 0,

satisfied by the following values
x = p, y = q,

we have

a+ bp+ cq + dp2 + epq + fq2 + gp3 + hp2q + kpq2 + lq3 = 0.

Setting
x = p+ t, y = q + u

and substituting into the given equation, it is transformed into

Bt+ Cu+Dt2 + Etu+ Fu2 +Gt3 +Ht2u+Ktu2 + Lu3 = 0,

where the coefficients B,C, . . . are some rational functions of p and q, which we de-
termine easily from the expansion of the terms of the given equation; but we can find
them even more easily by using the differential method. For if we suppose

a+ bp+ cq + dp2 + epq + fq2 + gp3 + hp2q + kpq2 + lq3 = A,

we will have

B =
dA

dp
, C =

dA

dq
, D =

1

2

d2A

dp2
, E =

d2A

dpdq
, F =

1

2

d2A

dq2
,

uSee [5].
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G =
1

2.3

d3A

dp3
, H =

1

2

d3A

dp2dq
, K =

1

2

d3A

dpdq2
, L =

1

2.3

d3A

dq3
.

Now, to be able to determine rational values for u and t, I first set equal to zero, in
the equation in t and u, the first two terms where t and u are linear; I thus have

Bt+ Cu = 0, whence u = −Bt
C

;

so what remains is the equation

Dt2 + Etu+ Fu2 +Gt3 +Ht2u+Ktu2 + Lu3 = 0;

therefore substituting in place of u its value, the whole equation will become divisible
by t2, and we will have, upon dividing,

D − BE

C
+
B2F

C2
+

(
G− BH

C
+
B2K

C2
− B3L

C3

)
t = 0

from which we obtain

t =
−C3D +BC2E −B2CF

C3G−BC2H +B2CK −B3L
,

thus

u =
BC2D −B2CE +B3F

C3G−BC2H +B2CK −B3L
.

Therefore we will have two new values for x and y, and taking these latter ones in
place of p and q, we can deduce new ones, and so on.

13. If the indeterminate equation was of the fourth degree, it would not be generally
possible to solve it by the preceding method. But we could arrive at a solution, if
it contains only the first two powers of one of the two unknowns, and moreover, by
considering this unknown as having two dimensions, there would not be any term of
more than four.

Indeed, let the equation

0 = a+ bx+ cy + dx2 + exy + fy2 + gx3 + hx2y + kx4

meet the required conditions, and let us suppose that the values

x = p, y = q

satisfy it; substituting p + t in place of x, and q + u in place of y, we will have an
equation of the form

Bt+ Cu+Dt2 + Etu+ Fu2 +Gt3 +Ht2u+Kt4 = 0.
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Setting
u = tz

and dividing the entire equation by t, it becomes

B + Cz +Dt+ Etz + Ftz2 +Gt2 +Ht2z +Kt3 = 0,

which, as we see, is nothing but an equation of the third degree in z and t. Thus, we
could then apply the preceding method to it, provided we know a value for z and t.
These values arise quite readily, for we only need to set

t = 0, B + Cz = 0, whence z = −B
C
.

Therefore, . . . ; but enough on this subject.
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[5] Euler, L. Élémens d’Algèbre. Seconde Partie. Bruyset, 1774. French trans-
lation of Euler’s Algebra containing Lagrange’s Additions. Accessible at: https:

//archive.org/details/bub_gb_8x2sFIty_RgC/page/n7/mode/2up.

[6] Euler, L. Miscellanea analytica (E560). Opuscula Analytica 1 (1783), 329–
344. Reprinted in Commentationes Arithmeticae 2, 1849, pp. 44-52 (E560a) and
in Opera Omnia: Series 1, Volume 4, pp. 91 - 104. Accessible at: https://

scholarlycommons.pacific.edu/euler-works/560/.

[7] Euler, L. De tribus pluribusve numeris inveniendis, quorum summa sit quadra-
tum, quadratorum vero summa biquadratum (E763). Mémoires de l’Académie
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Pétersbourg 10 (1826), 3–6. Reprinted in Commentationes Arithmeticae 2, 1849,
pp. 403-405 (E769a) and in Opera Omnia: Series 1, Volume 5, pp. 77 - 81. Orig-
inal article available online, along with an English translation by Jordan Bell, at:
https://scholarlycommons.pacific.edu/euler-works/769/.

[9] Euler, L. De insigni promotione analysis diophantaea (E772). Mémoires de
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