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Euler and the Multiplication
Formula for the Γ-Function

Alexander Aycock∗

1 Introduction

The interpolation of the factorial by the Γ-function was found nearly simultaneously
by Daniel Bernoulli (1700-1782) [Be29] and Euler in 1729 (see also his 1738 paper
[E19]) and is undoubtedly one of the most important functions in mathematics.
Most of its basic properties were discovered by Euler, who also gave the definition
that is often used today to introduce the function originally given in §7 of [E675].
In modern notation, we have

Γ(x) :=
∞∫

0

e−ttx−1dt for Re(x) > 0.

However, a full understanding of Γ as a meromorphic function of its argument could
only be achieved after Gauss’s contributions in the 19th century; the now universally-
adopted notation stems from Adrien Marie Legrendre (1752-1833) [Le09].
One of the fundamental properties of the Γ-function is so-called multiplication
formula that reads, in modern notation

Γ
( x

n

)
Γ
(

x + 1
n

)
· · · Γ

(
x + n− 1

n

)
=

(2π)
n−1

2

nx− 1
2
· Γ(x). (1)

For n = 2 one obtains the duplication formula that is usually ascribed to Legendre
[Le26].

∗Contact Information: Euler-Kreis Mainz, Algebraische Geometrie (FB08), Johannes Gutenberg-
Universität, 55128 Mainz, Germany; E-Mail: aaycock@students.uni-mainz.de
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The multiplication formula was first proven rigourously by Gauss in his influential
paper [Ga28] on the hypergeometric series, in which he also gave a complete account
of the factorial function Π(x) := Γ(x + 1) = x!. Gauss cited Euler’s results very
often, but apparently he was not aware of the lesser-known paper [E421] of Euler.
In that paper Euler presented a formula that is essentially equivalent to (1), as we
will now explain.

1.1 The function
(

p
q

)
In §3 of [E321] and §44 of [E421], Euler studied properties of the function

(
p
q

)
:=

1∫
0

xp−1dx

(1− xn)
n−q

n
.

In his notation the variable n is left implicit, and Euler showed the elegant symmetry
property (

p
q

)
=

(
q
p

)
.

Of course, by the substitution xn = y this function is just the Beta-function in
disguise: (

p
q

)
=

1
n

1∫
0

y
p
n−1dy(1− y)

q
n−1 =

1
n
· B
( p

n
,

q
n

)
, (2)

where the Beta-function is defined as

B(x, y) =
1∫

0

tx−1dt(1− t)y−1 for Re(x),Re(y) > 0.

Euler implicitly assumed p and q to be natural numbers, but this restriction is of
course not necessary.

One of Euler’s early discoveries in [E19] was that the Beta-integral reduces to a
product of Γ-factors:

B(x, y) =
Γ(x) · Γ(y)
Γ(x + y)

.

This result is also given in the supplement to [E421].
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1.2 The reflection formula

Euler’s version of the reflection formula for the Γ-function,

π

sin πx
= Γ(x)Γ(1− x),

can be found in §43 of [E421] and reads

[λ] · [−λ] =
πλ

sin πλ
,

where [λ] stands for λ!, that is Γ(1 + λ).
If one applies the reflection formula for x = i

n , i = 1, 2, · · · , n− 1, we obtain

Γ
(

1
n

)
Γ
(

n− 1
n

)
=

π

sin π
n

,

Γ
(

2
n

)
Γ
(

n− 2
n

)
=

π

sin 2π
n

,

Γ
(

3
n

)
Γ
(

n− 3
n

)
=

π

sin 3π
n

,

. . . = . . .

Γ
(

n− 1
n

)
Γ
(

1
n

)
=

π

sin (n−1)π
n

.

Multiplying these equations together gives our first auxiliary formula

n−1

∏
i=1

Γ
(

i
n

)2

=
πn−1

∏n−1
i=1 sin

( iπ
n

) .

Our second auxiliary formula is

n−1

∏
i=1

sin
(

iπ
n

)
=

n
2n−1 ,

which is a nice exercise and which was certainly known to Euler. For example, in §7
of [E562] and in §240 of [E101], he stated the more general formula

sin nϕ = 2n−1 sin ϕ sin
(π

n
− ϕ

)
sin
(π

n
+ ϕ

)
sin
(

2π

n
− ϕ

)
sin
(

2π

n
+ ϕ

)
· etc.
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This product has n factors in total. If we divide by 2n−1 sin ϕ, use sin
(

π(n−i)
n

)
=

sin
( iπ

n

)
and take the limit as ϕ→ 0, we obtain the second auxiliary formula.

The first and second auxiliary formula were also given by Gauss in [Ga28] and werw
used in his proof of the multiplication formula. Combining them and taking the
square root, we obtain the beautiful formula

Γ
(

1
n

)
Γ
(

2
n

)
· · · Γ

(
n− 1

n

)
=

√
(2π)n−1

n
. (3)

This formula was also found by Euler in §46 of [E816], where he stated it in the
form

1∫
0

dx
(

log
1
x

) 1
n

1∫
0

dx
(

log
1
x

) 2
n
· · ·

1∫
0

dx
(

log
1
x

) n−1
n

=
1 · 2 · 3 · · · (n− 1)

nn−1

√
2n−1πn−1

n
.

2 Euler’s version of the Multiplication Formula

In §53 of [E421] Euler gave the formula

[m
n

]
=

m
n

n

√
nn−m · 1 · 2 · 3 · · · (m− 1)

(
1
m

)(
2
m

)(
3
m

)
· · ·
(

n− 1
m

)
.

As before, [λ] is Euler’s notation for the factorial of λ, so that
[m

n

]
= Γ

(m
n + 1

)
.

Euler assumed m and n to be natural numbers, but it is easily seen that we can
interpolate 1 · 2 · 3 · · · (m− 1) via Γ(m). Therefore, if we assume x to be real and
positive and substitute x for m in the above formula and express it in terms of the
Beta-function using (2), Euler’s formula becomes

Γ
( x

n

)
= n

√
nn−xΓ(x)

1
nn−1 B

(
1
n

,
x
n

)
B
(

2
n

,
x
n

)
· · · B

(
n− 1

n
,

x
n

)
.

Expressing the Beta-function in terms of the Γ-function, then some rearrangement
under the radical yields
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Γ
( x

n

)
= n

√
n1−xΓ(x)

Γ
( 1

n

)
Γ
( x

n

)
Γ
( x+1

n

) ·
Γ
( 2

n

)
Γ
( x

n

)
Γ
( x+2

n

) · · ·
Γ
( n−1

n

)
Γ
( x

n

)
Γ
( x+n−1

n

) .

By bringing all Γ-functions with fractional argument to the left-hand side, the
expression simplifies to

Γ
( x

n

)
Γ
(

x + 1
n

)
Γ
(

x + 2
n

)
· · · Γ

(
x + n− 1

n

)
= n1−xΓ(x)Γ

(
1
n

)
· · · Γ

(
n− 1

n

)
.

The product on the right-hand side, Γ
( 1

n

)
· · · Γ

( n−1
n

)
, was evaluated in (3) and

thus we obtain

Γ
( x

n

)
Γ
(

x + 1
n

)
Γ
(

x + 2
n

)
· · · Γ

(
x + n− 1

n

)
= n1−xΓ(x)

√
(2π)n−1

n
.

Thus, we have arrived at the multiplication formula (1).

3 Summary and Conclusion

From the above sketch it is apparent that in [E421], Euler had a result that is
essentially equivalent to the multiplication formula for the Γ-function. He expressed
it in terms of the symbol

(
p
q

)
, which is expressed in modern notation via the

Beta-function. One may wonder why Euler did not express his result in terms of
the Γ-function itself. Reading his paper it becomes clear that his main motivation
was to express the factorial of rational numbers in terms of integrals of algebraic
functions, and the formula given by Euler fulfills this purpose. Probably for the same
reason, he did not replace 1 · 2 · 3 · · · (m− 1) by Γ(m).

Euler also expressed Γ( p
q ) in terms of integrals of algebraic algebraic functions in

§23 [E19] and §5 of [E122]. That formula reads

1∫
0

(− log x)
p
q dx = q

√
1 · 2 · 3 · · · p

(
2p
q

+ 1
)(

3p
q

+ 1
)(

4p
q

+ 1
)
· · ·
(

qp
q

+ 1
)

× q

√√√√√ 1∫
0

dx(x− xx)
p
q ·

1∫
0

dx(x2 − x3)
p
q ·

1∫
0

dx(x3 − x4)
p
q · · ·

1∫
0

dx(xq−1 − xq)
p
q .
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Despite the similarity to the first formula of section 2, this formula is not as general
as the multiplication formula1. It appears that Euler was aware that the proofs
he indicated in [E421] were not completely convincing. He expressed that with
characteristic honesty in a concluding Scholium:

Hence infinitely many relations among the integral formulas of the form∫ xp−1dx

(1− xn)
n−q

n
=

(
p
q

)
follow, which are even more remarkable, because we were led to them by a completely
singular method. And if anyone does not believe them to be true, he or she should
consult my observations on these integral formulas2 and will then hence easily be
convinced of their truth for any case. But even if this consideration provides some
confirmation, the relations found here are nevertheless of even greater importance,
because a certain structure is noticed in them and they are easily generalized to
all classes, whatever number was assumed for the exponent n, whereas in the
first treatment the calculation for the higher classes becomes continuously more
cumbersome and intricate.

The history of the Γ-function is long and complex, and we have seen here that not all
parts of the story have been told. We hope that this note provides some motivation
for people to examine carefully other papers by Euler and his contemporaries, not
only because they make for good reading, but also to find further results, maybe
stated in unfamiliar form, that were proven rigorously by their successors. This will
certainly be of interest for anyone studying the history of mathematics.
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and for proof-reading the text.

1In the foreword of the Opera Omnia, series 1, volume 19, p. LXI A. Krazer and G. Faber claim
that these two formulas are equivalent and both are a special case of the multiplication formula.
This is incorrect, as it was shown in the preceding sections. The formula given in section 3
does not lead to the multiplication formula, but only interpolates Γ

(
p
q

)
in terms of algebraic

integrals.
2Here Euler refers to his paper [E321].
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