Campus Access Only

All rights reserved. This publication is intended for use solely by faculty, students, and staff of University of the Pacific. No part of this publication may be reproduced, distributed, or transmitted in any form or by any means, now known or later developed, including but not limited to photocopying, recording, or other electronic or mechanical methods, without the prior written permission of the author or the publisher.

Date of Award

2012

Document Type

Thesis - Pacific Access Restricted

Degree Name

Master of Science (M.S.)

Department

Engineering Science

First Advisor

Ravi K. Jain

First Committee Member

Mary Kay Camarillo

Second Committee Member

William Ford

Abstract

Pollution from nonpoint sources is a leading cause of receiving water quality impairment. The largest source of nonpoint pollution is storm water runoff, which includes pollutants such as sediment, nutrients, metals, microorganisms, and organic compounds. Sediment is of particular importance because many pollutants are readily 5 adsorbed onto particles. In the Lake Tahoe basin, sediment is also significant because of its direct contribution to clarity attenuation. The most prudent control measure for mitigating sediment flux in the Lake Tahoe basin is infiltration, which captures runoff volume, allowing it to percolate into the soil and enter groundwater. All residential parcels in the Lake Tahoe basin are required to have an on-site infiltration system. These systems require rigorous maintenance to maintain full function. Negligence can lead to premature clogging from debris and accumulated sediment, and the cost of rehabilitating or replacing the system can be significant to homeowners. It is mandatory for a sediment trapping device to be installed to pretreat runoff discharged into the infiltration system; however, there is limited infomation regarding sediment trapping devices designed for residential use.

The objective of this research was to evaluate the performance of an on-site stormwater treatment device in removing sediment from simulated stormwater runoff. The sediment trapping device consists of removable, porous 200-micron nylon inserts for filtration and is designed to mitigate premature clogging infiltrative runoff control measures. Laboratory analysis of a full scale device model was performed. Removal efficiency, effluent concentration, and bulk solids removal were assessed for perfomance evaluation. The device demonstrated a median removal efficiency from grab samples of 74%, median total suspended solids effluent concentration of 72 mg/L, and removed 89% of the total solids introduced into the system. Economic and sustainability implications of the device were also assessed.

Pages

98

To access this thesis/dissertation you must have a valid pacific.edu email address and log-in to Scholarly Commons.

Find in PacificSearch

Share

COinS

If you are the author and would like to grant permission to make your work openly accessible, please email

 

Rights Statement

Rights Statement

In Copyright. URI: http://rightsstatements.org/vocab/InC/1.0/
This Item is protected by copyright and/or related rights. You are free to use this Item in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s).