Campus Access Only

All rights reserved. This publication is intended for use solely by faculty, students, and staff of University of the Pacific. No part of this publication may be reproduced, distributed, or transmitted in any form or by any means, now known or later developed, including but not limited to photocopying, recording, or other electronic or mechanical methods, without the prior written permission of the author or the publisher.

Date of Award

2015

Document Type

Thesis - Pacific Access Restricted

Degree Name

Master of Science in Engineering (M.S.Eng.)

Department

Engineering

First Advisor

Elizabeth Basha

First Committee Member

Carrick Detweiler

Second Committee Member

Louise Stark

Abstract

Wireless sensor networks (WSNs) have been a topic of research for decades. Researchers have been exploring different uses for UAVs with their growing popularity. In this thesis I develop a wireless sensor network (WSN) and introduce the theoretical effects of an unmanned aerial vehicle (UAV) for wireless recharging of individual nodes in the WSN. My research focuses on understanding how to use wireless recharging technology to maximize the lifetime of a WSN by simulating recharging on the physical nodes. Using a three by three grid of nine sensor nodes, I proved that recharging the lowest powered node in the network at each sink iteration increased the lifetime of the WSN by 538% when compared to no recharging. I also further investigate the potential uses of a WSN and UAV for detecting and deterring animals. Using wireless sensor nodes to initially detect movement, and the UAV to find the object proved to be a viable solution for offloading the more power intensive tasks from the WSN to the UAV.

Pages

65

ISBN

9781339312972

To access this thesis/dissertation you must have a valid pacific.edu email address and create an account for Scholarly Commons.

Find in ProQuest

Share

COinS

If you are the author and would like to grant permission to make your work openly accessible, please email