Campus Access Only

All rights reserved. This publication is intended for use solely by faculty, students, and staff of University of the Pacific. No part of this publication may be reproduced, distributed, or transmitted in any form or by any means, now known or later developed, including but not limited to photocopying, recording, or other electronic or mechanical methods, without the prior written permission of the author or the publisher.

Date of Award

2014

Document Type

Thesis - Pacific Access Restricted

Degree Name

Master of Science (M.S.)

Department

Biological Sciences

First Advisor

Craig Vierra

First Committee Member

Shelly Gulati

Second Committee Member

Lisa Wrischnik

Abstract

Spider silk displays a unique balance of high tensile strength and extensibility, making it one of the toughest materials on the planet. Dragline silk, also known as the lifeline of the spider, represents one of the best studied fiber types and many labs are attempting to produce synthetic dragline silk fibers for commercial applications. In these studies, we develop a minifibroin for expression studies in bacteria. Using recombinant DNA methodology and protein expression studies, we develop a natural minifibroin that contains the highly conserved N- and C-terminal domains, along with several internal block repeats of MaSp1. We also characterize a family of small cysteine-rich proteins (CRPs) and demonstrate that these factors are present within the spinning dope of the major ampullate gland using MS analysis. Biochemical studies and characterization of one of the family members, CRP1, demonstrate that this factor can self-polymerize into higher molecular weight complexes under oxidizing conditions, but can be converted into a monomeric species under reducing conditions. Self-polymerization of CRP1 is also shown to be independent of pH and salt concentration, two important chemical cues that help fibroin aggregation. Overall, our data demonstrate that the polymerization state of CRP1 is dependent upon redox state, suggesting that the redox environment during fiber extrusion may help regulate the oligomerization of CRP molecules during dragline silk production.

Pages

71

ISBN

9781321386158

To access this thesis/dissertation you must have a valid pacific.edu email address and create an account for Scholarly Commons.

Find in ProQuest

Share

COinS

If you are the author and would like to grant permission to make your work openly accessible, please email