Campus Access Only

All rights reserved. This publication is intended for use solely by faculty, students, and staff of University of the Pacific. No part of this publication may be reproduced, distributed, or transmitted in any form or by any means, now known or later developed, including but not limited to photocopying, recording, or other electronic or mechanical methods, without the prior written permission of the author or the publisher.

Title

Synthesis and conformational study of trans-2-aminocyclohexanol-based pH-triggered molecular switches and their application in gene delivery

Date of Award

2013

Document Type

Dissertation - Pacific Access Restricted

Degree Name

Doctor of Philosophy (Ph.D.)

Department

Pharmaceutical and Chemical Sciences

First Advisor

Vyacheslav Sameshin

First Committee Member

Andreas Franz

Second Committee Member

Xin Guo

Third Committee Member

Xiaoling Li

Fourth Committee Member

Jianhua Ren

Fifth Committee Member

Wade Russu

Sixth Committee Member

Liang Xue

Abstract

trans-2-Aminocyclohexanol (TACH) is a promising model for pH-triggerable molecular switches with a variety of potential applications. In particular, such a switch, when incorporated into cationic liposomes, provides a novel design of the pH-sensitive helper lipids for gene delivery. Protonation of TACH molecules results in a strong intramolecular hydrogen bond between the amino and its neighboring hydroxyl groups, which triggers a conformational flip, and forces changes of the relative position of other substituents on the ring. In this work, a library of TACH-lipids has been designed and built based on structural modifications of both hydrophilic headgroups and hydrophobic tails, and their conformational behavior has been studied by 1 H NMR. NMR-titration has been done to quantitatively monitor the conformational switch for TACH derivatives. It was discovered that conformational behavior of TACH-lipids is independent from the length or shape of their hydrophobic tails. Therefore, a simplified model was suggested based on TACH with diethyl groups instead of hydrocarbon tails. Conformational study of these models has demonstrated that the position of equilibrium shift A [special characters omitted] BH + can be effectively changed by altering structure of NR 2 R 3 group. Furthermore, the pH-induced conformational flip occurs in a certain pH range that mostly depends on the basicity of group NR 2 R 3 , allowing a broad tuning of the pH-sensitivity of TACH-based conformational switches in a wide range of acidity. The hydrophilic OH group was also modified to influence the conformational equilibrium. External stimuli including addition of acid, change of solvent and of the solution ionic strength also showed impact on conformation equilibrium to different extents. To explore the potential to serve as pH-sensitive helper lipids in gene delivery, a variety of TACH-lipids were incorporated into lipoplexes together with the cationic lipid DOTAP to mediate DNA transfection in Bl6F1 and HeLa cancer cell lines. The lipoplex comprising TACH-lipid 3o (R 1 = C 19 H 37 ; R 2 R 3 = CF 3 CH 2 NH) exhibited one to two orders of magnitude better transfection efficiency than the one with the conventional helper lipid DOPE while only inducing slight higher cytotoxicity. Thus, the lipid can be suggested as a novel helper lipid for efficient gene transfection with low cytotoxicity.

Pages

314

ISBN

9781303533945

Notice

This publication has not yet been digitized by University of the Pacific Libraries. If you are the author, please contact Library staff to request digitization at scholarlycommons@pacific.edu.

This document is currently not available here.

To access this thesis/dissertation you must have a valid pacific.edu email address and create an account for Scholarly Commons.

Find in ProQuest

Share

COinS

If you are the author and would like us to digitize and make your work openly accessible, please email