Campus Access Only

All rights reserved. This publication is intended for use solely by faculty, students, and staff of University of the Pacific. No part of this publication may be reproduced, distributed, or transmitted in any form or by any means, now known or later developed, including but not limited to photocopying, recording, or other electronic or mechanical methods, without the prior written permission of the author or the publisher.

Date of Award

2015

Document Type

Dissertation - Pacific Access Restricted

Degree Name

Doctor of Philosophy (Ph.D.)

Department

Pharmaceutical and Chemical Sciences

First Advisor

Xiaoling Li

First Committee Member

Xin Guo

Second Committee Member

Bhaskara Jasti

Third Committee Member

Shawn Lee

Fourth Committee Member

Jerry Tsai

Abstract

Human Epidermal Growth Factor Receptor 2 (HER2) is a cell surface receptor tyrosine kinase and plays a role in the signal pathways leading to cell proliferation and differentiation. Overexpression of HER2 is found in various cancers including breast, ovarian, gastric, colon, and non-small-cell lung cancers, which makes it an attractive target for cancer therapy. Specific antibodies, peptides and small molecules are developed by scientists to bind with HER2 as therapeutical agents, dimerization inhibitors and biological makers. Among these molecules, antibodies showed excellent binding affinity and specificity toward HER2. However, uses of antibodies are limited by their high cost of production, long development time, limited ability to penetrate tumor tissue and immunogenicity. Many of these limitations are due to the high molecular weight of antibodies. Compared to antibodies, peptides and small molecule that selectively recognize HER2 have advantages in solubility, permeability and immunogenicity. So far, the design of all peptides and small molecules for binding with HER2 either utilize phage display technique or rely on computational screen of large library of millions of small molecules. These approaches all suffer from the drawbacks of tedious, labor intensive, and time consuming as well as uncertainty of outcome. In this study, it was hypothesized that a novel approach based on molecular interactions of HER2-Pertuzumab complex and Knob-Socket model can be developed to design antibody mimics for targeting HER2. All designed antibody mimics were simulated and docked with HER2 using Molecular Operating Environment (MOE) software to estimate binding energy and analyze the detail interaction map. A series of mimics were then synthesized and characterized. HER2 positive breast cancer cells MDA-MB-361 and ZR-75-1 were used in confocal microscopic and flow cytometric studies to evaluate the binding specificity of all antibody mimics to HER2 in vitro, while human embryonic kidney cell (HEK293) was used as control. After incubation with antibody mimics, high fluorescence intensities were observed on MDA-MB-361 and ZR-75-1 cells, while only background fluorescence were observed on HEK293 cells. Surface plasma resonance (SPR) studies showed that all antibody mimics bind to HER2 protein with KD value in range of 55.4 nM- 525.5 nM. Western blot technique was used to evaluate inhibition capability of antibody mimics on phosphorylation of HER2 downstream signaling Akt and MAPK pathways that were crucial for cell differentiation and survival. When treated with antibody mimics at 10µM for 24 h, more than 85% phosphorylation of Akt pathway was inhibited while phosphorylation of MAPK pathway was not affected. This finding proved that antibody mimics could bind to HER2 extracellular domain and selectively inhibit the dimerization between HER2 and HER3 to block phosphorylation of Akt pathway in a similar way as Pertuzumab. In addition, in vivo studies on tumor bearing nude mice were carried out to investigate the distribution and binding specificity of antibody mimics towards HER2 positive tumor after injecting through vein tail. Signal intensity ratio (SIR) of tumor to muscle revealed about 10-fold increase in tumor retention of HER2-PEP11 compared to the Cy7.5 carboxylic acid and Cy7.5-HER2-PEP22, which confirmed excellent in vivo binding specificity of antibody mimic HER2-PEP11 to HER2 positive tumor. In conclusion, this study demonstrated that a rational design of antibody mimics with both binding specificity and affinity towards HER2 based on the molecular interaction between Pertuzumab and HER2 and Knob-Socket model is feasible.

Pages

235

ISBN

9781339028057

To access this thesis/dissertation you must have a valid pacific.edu email address and create an account for Scholarly Commons.

Find in ProQuest

Share

COinS

If you are the author and would like to grant permission to make your work openly accessible, please email