Title

Microdroplet formation in rounded flow-focusing junctions

Document Type

Article

Publication Title

Microfluidics and Nanofluidics

ISSN

1613-4982

Volume

20

Issue

2

DOI

10.1007/s10404-015-1680-3

First Page

1

Last Page

9

Publication Date

January 2016

Abstract

Herein we report microfluidic droplet formation in flow-focusing geometries possessing varying degrees of rounding. Rounding is incorporated in all four corners (symmetric) or only in the two exit corners (asymmetric). The ratios of the radius of curvature, R, to channel width, w, are varied where R/w = 0, 0.5 and 1. In all cases, monodisperse droplets are produced, with the largest droplets being produced at the junctions with the largest rounding. Junctions without rounding are shown to produce droplets at higher frequencies than those with rounding. Droplet pinch-off position is found to be dependent on both geometry and volumetric flow rates; the location shifts toward the interior of the rounded junctions with increasing oil-to-water flow rate ratios. Accordingly, we find that rounding within microfluidic flow-focusing junctions strongly influences droplet formation. Junction rounding may be deliberate due to the selected fabrication method or occur as an unintended result of microfabrication processes not held to strict tolerances. Indeed, understanding droplet characteristics for those formed in such structures is critical for microfluidic applications where droplet volume or reagent mass must be well controlled. Thus, rounding can be a valuable design parameter when tuning the size and production frequency for emulsion collection or ensuing downstream operations such as chemical reactions.