Title

p53 signalling controls cell cycle arrest and caspase-independent apoptosis in macrophages infected with pathogenic Leptospira species

ORCiD

David M. Ojcius: 0000-0003-1461-4495

Document Type

Article

Publication Title

Cellular Microbiology

ISSN

1462-5814

Volume

15

Issue

10

DOI

10.1111/cmi.12141

First Page

1642

Last Page

1659

Publication Date

10-1-2013

Abstract

Pathogenic Leptospira species, the causative agents of leptospirosis, have been shown to induce macrophage apoptosis through caspase-independent, mitochondrion-related apoptosis inducing factor (AIF) and endonuclease G (EndoG), but the signalling pathway leading to AIF/EndoG-based macrophage apoptosis remains unknown. Here we show that infection of Leptospira interrogans caused a rapid increase in reactive oxygen species (ROS), DNA damage, and intranuclear foci of 53BP1 and phosphorylation of H2AX (two DNAdamage indicators) in wild-type p53-containing mouse macrophages and p53-deficient human macrophages. Most leptospire-infected cells stayed at the G1 phase, whereas depletion or inhibition of p53 caused a decrease of the G1 -phase cells and the early apoptotic ratios. Infection with spirochaetes stimulated a persistent activation of p53 and an early activation of Akt through phosphorylation. The intranuclear translocation of p53, increased expression of p53-dependent p21(Cip) (1/) (WAF) (1) and pro-apoptotic Bcl-2 family proteins (Bax, Noxa and Puma), release of AIF and EndoG from mitochondria, and membrane translocation of Fas occurred during leptospire-induced macrophage apoptosis. Thus, our study demonstrated that ROS production and DNA damage-dependent p53-Bax/Noxa/Puma-AIF/EndoG signalling mediates the leptospire-induced cell cycle arrest and caspase-independent apoptosis of macrophages.